과제정보
This work is carried out under the financial support of the China National Postdoctoral Program for Innovative Talents (Grant No. BX201600124), China Postdoctoral Science Foundation (Grant No. 2019M3737).
참고문헌
- J.P. Hartnett, W.M. Rohsenow, Y. Cho, in: third ed., in: J.P. Hartnett, Warren M. Rohsenow (Eds.), Handbook of Heat Transfer. Handbook of Heat Transfer, vol. 1, McGraw-Hill, New York, 1998.
- N. Zuber, On the stability of boiling heat transfer, Trans. ASME 80 (1958) 711-720.
- N. Zuber, Hydrodynamic Aspects of Boiling Heat Transfer (PhD Dissertation), University of California, Los Angeles, USA, 1959.
- S. Ishigai, K. Inoue, Z. Kiwaki, T. Inai, Boiling heat transfer from a flat surface facing downward, in: Proceedings of the International Heat Transfer Conference, 1961.
- P. Githinji, R. Sabersky, Some effects of the orientation of the heating surface in nucleate boiling, J. Heat Tran. 85 (4) (1963) 379. https://doi.org/10.1115/1.3686129
- N. Kaneyasu, F. Yasunobu, U. Satoru, O. Haruhiko, Effect of surface configuration on nucleate boiling heat transfer, Int. J. Heat Mass Tran. 27 (9) (1984) 1559-1571. https://doi.org/10.1016/0017-9310(84)90268-0
- L.T. Chen, Heat transfer to pool-boiling Freon from inclined heating plate, Lett. Heat Mass Tran. 5 (2) (1978) 111-120. https://doi.org/10.1016/0094-4548(78)90025-5
- S.M. Aznam, S. Mori, F. Sakakibara, K. Okuyama, Effects of heater orientation on critical heat flux for nanoparticle-deposited surface with honeycomb porous plate attachment in saturated pool boiling of water, Int. J. Heat Mass Tran. 102 (2016) 1345-1355. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.004
- T. Kim, J.M. Kim, J.H. Kim, S.C. Park, H.S. Ahn, Orientation effects on bubble dynamics and nucleate pool boiling heat transfer of graphene-modified surface, Int. J. Heat Mass Tran. 108 (2017) 1393-1405. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.099
- J.M. Kim, J.H. Kim, H.S. Ahn, Hydrodynamics of nucleate boiling on downward surface with various orientation. Part I: departure diameter, frequency, and escape speed of the slug, Int. J. Heat Mass Tran. 116 (2018) 1341-1351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.041
- Y. Mei, et al., Effects of heater material and surface orientation on heat transfer coefficient and critical heat flux of nucleate boiling, Int. J. Heat Mass Tran. 121 (2018) 632-640. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.020
- V.M. Borinshansky, F.S. Fokin, Heat Transfer and hydrodynamics in steam generators, Trudy TsKTI 62 (1) (1963).
- E. Ruckenstein, A physical model for nucleate boiling heat transfer, Int. J. Heat Mass Tran. 7 (2) (1964) 191-198. https://doi.org/10.1016/0017-9310(64)90083-3
- I. Vishnev, Effect of orienting the hot surface with respect to the gravitational field on the critical nucleate boiling of a liquid, J. Eng. Phys. Thermophys. 24 (1) (1973) 43-48. https://doi.org/10.1007/BF00827332
- Z. Guo, M.S. El-Genk, An experimental study of saturated pool boiling from downward facing and inclined surfaces, Int. J. Heat Mass Tran. 35 (9) (1992) 2109-2117. https://doi.org/10.1016/0017-9310(92)90056-X
- M.S. El-Genk, Z. Guo, Transient boiling from inclined and downward-facing surfaces in a saturated pool, Int. J. Refrig. 16 (6) (1993) 414-422. https://doi.org/10.1016/0140-7007(93)90058-G
- M.J. Brusstar, H. Merte, Effects of heater surface orientation on the critical heat flux-II. A model for pool and forced convection subcooled boiling, Int. J. Heat Mass Tran. 40 (17) (1997) 4021-4030. https://doi.org/10.1016/S0017-9310(97)00077-X
- J. Chang, S. You, Heater orientation effects on pool boiling of micro-porous enhanced surfaces in saturated FC-72, J. Heat Tran. 118 (4) (1996) 937-943. https://doi.org/10.1115/1.2822592
- J.L. Parker, M.S. El-Genk, Saturation and subcooled boiling of HFE-7100 on pinned surfaces at different orientations, Ratio 8 (2009) 8.
- J.M. Kim, J.H. Kim, H.S. Ahn, Hydrodynamics of nucleate boiling on downward surface with various orientation. Part I: departure diameter, frequency, and escape speed of the slug, Int. J. Heat Mass Tran. 116 (2018) 1341-1351. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.041
- M.S. El-Genk, H. Bostanci, Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip, Int. J. Heat Mass Tran. 46 (10) (2003) 1841-1854. https://doi.org/10.1016/S0017-9310(02)00489-1
- W. Fritz, Berechnung des maximal volume von dampf blasen, Phys. Z. 36 (1935) 379-388.
- R. Cole, Bubble frequencies and departure volumes at subatmospheric pressures, AIChE J. 13 (4) (1967) 779-783. https://doi.org/10.1002/aic.690130434
- V.S. Golorin, B.A. Kol'chugin, E.A. Zakharova, Investigation of the mechanism of nucleate boiling of ethyl alcohol and benzene by means of high-speed motion picture photography, Heat Tran. Sov. Res. 10 (4) (1978) 79-98.
- M.K. Jensen, G.J. Memmel, Evaluation of bubble departure diameter correlations, in: Proceedings of the Eighth International Heat Transfer Conference, vol. 4, 1986, pp. 1907-1912.
- L.Z. Zeng, J.F. Klausner, R. Mei, A unified model for the prediction of bubble detachment diameters in boiling systems-I. Pool boiling, Int. J. Heat Mass Tran. 36 (9) (1993) 2261-2270. https://doi.org/10.1016/S0017-9310(05)80111-5
- C. Yang, Y. Wu, X. Yuan, C. Ma, Study on bubble dynamics for pool nucleate boiling, Int. J. Heat Mass Tran. 43 (2) (2000) 203-208. https://doi.org/10.1016/S0017-9310(99)00132-5
- M. Jamialahmadi, A. Helalizadeh, H. Muller-Steinhagen, Pool boiling heat transfer to electrolyte solutions, Int. J. Heat Mass Tran. 47 (4) (2004) 729-742. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.025
- J. Kim, M.H. Kim, On the departure behaviors of bubble at nucleate pool boiling, Int. J. Multiphas. Flow 32 (10) (2006) 1269-1286. https://doi.org/10.1016/j.ijmultiphaseflow.2006.06.010
- M. Jakob, W. Fritz, Versucheuber den Verdampfungsvorgang, Forsch. Im. Ingenieurwes. 2 (12) (1931) 435-447. https://doi.org/10.1007/BF02578808
- F.N. Peebles, H.J. Garber, Studies on the motion of gas bubbles in liquids, Chem. Eng. Prog. 49 (2) (1953) 88-97.
- P.W. McFadden, P. Grassmann, The relation between bubble frequency and diameter during nucleate pool boiling, Int. J. Heat Mass Tran. 5 (3) (1962) 169-173. https://doi.org/10.1016/0017-9310(62)90009-1
- N. Zuber, Nucleate boiling. The region of isolated bubbles and the similarity with natural convection, Int. J. Heat Mass Tran. 6 (1) (1963) 53-78. https://doi.org/10.1016/0017-9310(63)90029-2
- B.B. Mikic, W.M. Rohsenow, P. Griffith, On bubble growth rates, Int. J. Heat Mass Tran. 13 (4) (1970) 657-666. https://doi.org/10.1016/0017-9310(70)90040-2
- J.H. Kim, S.M. You, J.Y. Pak, Effects of heater size and working fluids on nucleate boiling heat transfer, Int. J. Heat Mass Tran. 49 (1) (2006) 122-131. https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.001