Acknowledgement
This study is financially supported by Innovative Scientific Program of CNNC.
References
- P. Von der Hardt, A.V. Jones, C. Lecomte, A. Tattegrain, Nuclear Safety Research: the Phebus FP severe accident experimental program, Nucl. Saf. 35(2) (1994) 187-205.
- B. Clement, R. Zeyen, The objectives of the Phebus FP experimental programme and main findings, Ann. Nucl. Energy 61 (2013) 4-10, https://doi.org/10.1016/j.anucene.2013.03.037.
- Irsn, Nuclear Power Reactor Core Melt Accidents - Current State of Knowledge, EDP Sciences, 2015, ISBN 978-2-7598-1835-8.
- P. March, B. Simondi-Teisseire, Overview of the facility and experiments performed in Phebus FP, Ann. Nucl. Energy 61 (Nov) (2013) 11-22, https://doi.org/10.1016/j.anucene.2013.03.040.
- B.R. Sehgal, Nuclear safety in light water reactors severe accident phenomeneology, Academic Press Elsevier, 2012, https://doi.org/10.1016/C2010-0-67817-5.
- S. Suman, Impact of hydrogen on rupture behaviour of Zircaloy-4 nuclear fuel cladding during loss-of-coolant accident: a novel observation of failure at multiple locations, Nuclear Engineering and Technology (2021), https://doi.org/10.1016/j.net.2020.07.017.
- M.S. Veshchunov, V.E. Shestak, Model for melt blockage (slug) relocation and physico-chemical interactions during core degradation under severe accident conditions, Nucl. Eng. Des. 238 (1997) 3500-3507, https://doi.org/10.1016/j.nucengdes.2008.08.012, 12(2008).
- R.O. Gauntt, J.E. Cash, R.K. Cole, et al., MELCOR Computer Code Manuals 1-2, version 1.8.6, U.S. Nuclear Regulatory Commission, Sandia National Laboratories, 2005.
- MELCOR Computer Code Manuals Vol. 3: MELCOR Assessment Problems Version 2.1.7347, 2015.
- Xin Gong, Yijie Jiang, Shurong Ding, Yong zhong, et al., Simulation OF the IN-pile behaviors evolution IN nuclear fuel rods with the irradiation damage effects, Acta Mech. Solida Sin. 27 (2014) 567, https://doi.org/10.1016/S0894-9166(15)60001-5.
- Timo Ikonen, et al., Module for thermomechanical modeling of LWR fuel in multiphysics simulations, Ann. Nucl. Energy 84 (oct) (2015) 111-121, https://doi.org/10.1016/j.anucene.2014.11.004.
- U.S. Nuclear Regulatory Commission, Division of Systems Analysis. Fuel Rod Behavior and Uncertainty Analysis by FRAPTRAN/TRACE/Dakota Code in Maanshan LBLOCA. Washington, DC: Division of Systems Analysis, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 2016.
- R.L. Williamson, et al., Multi-dimensional simulation of LWR fuel behavior in the BISON fuel performance code, J. Occup. Med. 68 (2016) 2930-2937, https://doi.org/10.1007/s11837-016-2115-7, 11.
- T. Glantz, et al., DRACCAR: a multi-physics code for computational analysis of multi-rod ballooning, cool ability and fuel relocation during LOCA transients. Part Two: overview of modeling capabilities for LOCA, Nucl. Eng. Des. 339 (2018) 202-214, https://doi.org/10.1016/j.nucengdes.2018.06.022.
- Janos Gado, Agnes Griger, Katalin Kulacsy, The fuel behaviour code FUROM and its high burn-up simulation capabilities, Nucl. Eng. Des. 327 (FEB) (2018) 274-285, https://doi.org/10.1016/j.nucengdes.2017.12.012.
- E. Syrjalahti, T. Ikonen, V. Tulkki, Modeling burnup-induced fuel rod deformations and their effect on transient behavior of a VVER-440 reactor core, Ann. Nucl. Energy 125 (2019) 121-131, https://doi.org/10.1016/j.anucene.2018.10.039.
- A.G. Pastore, et al., Analysis of fuel rod behavior during loss-of-coolant accidents using the BISON code: cladding modeling developments and simulation of separate-effects experiments, J. Nucl. Mater. 543 (2020), https://doi.org/10.1016/j.jnucmat.2020.152537.
- H. Kim, Sunguk Lee, Jinsu Kim, et al., Development of MERCURY for simulation of multidimensional fuel behavior for LOCA condition, Nucl. Eng. Des. 369 (2020) 110853, https://doi.org/10.1016/j.nucengdes.2020.110853.
- Pengcheng Gao, Bin Zhang, et al., Development of mechanistic cladding rupture model for integrated severe accident code ISAA. Part I: module verification and application in CAP1400, Ann. Nucl. Energy 158 (2021) 2-3, https://doi.org/10.1016/j.anucene.2021.108305, 108305.
- P.C. Gao, Bin Zhang, et al., DEVELOPMENT OF MECHANISTIC CLADDING RUPTURE MODEL FOR SEVERE ACCIDENT ANALYSIS AND APPLICATION, National Energy Nuclear Power Software Key Laboratory 2020 Academic Annual Meeting, 2020, pp. 499-506.
- K. Geelhood, W. Luscher, P. Raynaud, et al., FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup. Nuclear Regulatory Commission, Pacific Northwest Lab., Richland, WA (United States), 2015. Washington, DC (United States). Div. of Systems Technology.
- Kenneth Geelhood, Walter Luscher, Ian Porter, Material Property Correlations: Comparisons between FRAPCON-4.0, FRAPTRAN-2.0, and MATPRO, 2015, https://doi.org/10.2172/1030897.
- Kenneth Geelhood, Walter Luscher, J.M. Cuta, Ian Porter, FRAPTRAN-2.0: A Computer Code for the Transient Analysis of Oxide Fuel Rods, 2016.
- Institut de Protection et de Surete Nucleaire (Ipsn), Final Report FPT1, PHEBUSPF, IPSN/JRC, Saint Paul-lez-Durance Cedex, France, 2000.
- T. Ikeda, M. Terada, H. Karasawa, et al., Analysis of core degradation and fission products release in phebus FPT1 test at IRSN by detailed severe accidents analysis code, IMPACT/SAMPSON, J. Nucl. Sci. Technol. 40 (8) (2003) 591-603, https://doi.org/10.1080/18811248.2003.9715396.
- B. Clement, T. Haste, Thematic network for a phebus FPT-1 international standard problem, in: OECD/NEA Comparison Report on International Standard Problem ISP-46, 2003. PHEBUS FPT-1).
- B. Clement, T. Haste, E. Krausmann, et al., Thematic network for a Phebus FPT1 international standard problem (THENPHEBISP), Nucl. Eng. Des. 235 (2/4) (2005) 347-357. https://doi.org/10.1016/j.nucengdes.2004.08.057
- M. Leskovar, Simulation of the phebus FPT1 experiment with MELCOR 1.8.5, Int. Conf. Nucl. Energy New Eur. (2002) 1-8, 2002.
- Snl, MELCOR 2.1 Computer Code Manual - Volume 3 - Code Assessment, 2015, 2015.
- Jun Ho Bae, et al., Core degradation simulation of the PHEBUS FPT3 experiment using COMPASS code, Nucl. Eng. Des. 320 (2017) 258-268, https://doi.org/10.1016/j.nucengdes.2017.05.030.
- Snl, MELCOR 2.2 Computer Code Manual - Volume 1 - User Guide, 2017, 2017.
- L.L. Humphries. https://www.psi.ch/sites/default/files/import/emug/WS2018EN/WS_2018_03.pdf, 2018d.
- U.S. Nrc, Accident Source Terms for Light-Water Nuclear Power Plants, 1995. NUREG-1465.
- Snl, MELCOR Best Practices as Applied in the State-Of-The-Art Reactor Consequence Analyses (SOARCA) Project, U.S. NC Report NUREG/CR-7008, 2014, 2014.
- Mazzini, Guido, Severe accident phenomenology analyses and fission gas release in advanced nuclear reactors, Pisa University Press, 2012. http://etd.adm.unipi.it/theses/available/etd-04302012-144408/.
- Georges Repetto, et al., Preliminary analyses of the phebus FPT3 experiment using severe accident codes (ATHLET-CD, ICARE/CATHARE, MELCOR), Nucl. Technol. 176 (2011) 352-371, https://doi.org/10.13182/NT11-A13313, 3.
- T. Haste, F. Payot, P.D.W. Bottomley, Transport and deposition in the Phebus FP circuit, Ann. Nucl. Energy 61 (Nov) (2013) 102-121, https://doi.org/10.1016/j.anucene.2012.10.032.