DOI QR코드

DOI QR Code

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H. (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • Marashdeh, M.W. (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU)) ;
  • AlAqeel, M. (Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU))
  • Received : 2021.05.25
  • Accepted : 2021.08.23
  • Published : 2022.02.25

Abstract

The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

Keywords

Acknowledgement

The authors are highly thankful to Mr. Yayha Mobarki in Nuclear and Radiological Regulatory Commission for providing the facilities to conduct the experiments.

References

  1. T. Singh, Rajni, U. Kaur, P.S. Singh, Photon energy absorption parameters for some polymers, Ann. Nucl. Energy 37 (2010) 422-427, https://doi.org/10.1016/j.anucene.2009.12.017.
  2. K.S. Mann, A. Rani, M.S. Heer, Shielding behaviors of some polymer and plastic materials for gamma-rays, Radiat. Phys. Chem. 106 (2015) 247-254, https://doi.org/10.1016/j.radphyschem.2014.08.005.
  3. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H.I. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies, Polym. Adv. Technol. 32 (2021) 2386-2396, https://doi.org/10.1002/pat.5267.
  4. M.I. Sayyed, Investigation of shielding parameters for smart polymers, Chin. J. Phys. 54 (2016) 408-415, https://doi.org/10.1016/j.cjph.2016.05.002.
  5. M. Kurudirek, Effective atomic number, energy loss and radiation damage studies in some materials commonly used in nuclear applications for heavy charged particles such as H, C, Mg, Fe, Te, Pb and U, Radiat. Phys. Chem. 122 (2016) 15-23, https://doi.org/10.1016/j.radphyschem.2016.01.012.
  6. S. Haoue, H. Derdar, M. Belbachir, A. Harrane, A new green catalyst for synthesis of bis-macromonomers of polyethylene glycol (PEG), ChChT 14 (2020) 468-473, https://doi.org/10.23939/chcht14.04.468.
  7. I.F. Al-Hamarneh, M.W. Marashdeh, F.I. Almasoud, A. Alkaoud, Determination of gamma-ray parameters for polyethylene glycol of different molecular weights, Nucl. Sci. Tech. 28 (2017), https://doi.org/10.1007/s41365-017-0311-y.
  8. Bioconjugate Techniques, Elsevier, 2008, https://doi.org/10.1016/b978-0-12-370501-3.x0001-x.
  9. W. Mccarthy, Polymeric drug delivery techniques, Aldrich Mater. Sci. (2016) 3-12.
  10. J. Manson, D. Kumar, B.J. Meenan, D. Dixon, Polyethylene glycol functionalized gold nanoparticles: the influence of capping density on stability in various media, Gold Bull. 44 (2011) 99-105, https://doi.org/10.1007/s13404-011-0015-8.
  11. B.D. Fairbanks, M.P. Schwartz, C.N. Bowman, K.S. Anseth, Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2,4,6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility, Biomaterials 30 (2009) 6702-6707, https://doi.org/10.1016/j.biomaterials.2009.08.055.
  12. A. Larsson, T. Ekblad, O. Andersson, B. Liedberg, Photografted poly(ethylene glycol) matrix for affinity interaction studies, Biomacromolecules 8 (2007) 287-295, https://doi.org/10.1021/bm060685g.
  13. F. Bretagnol, H. Rauscher, M. Hasiwa, O. Kyli an, G. Ceccone, L. Hazell, A.J. Paul, O. Lefranc, F. Rossi, The effect of sterilization processes on the bioadhesive properties and surface chemistry of a plasma-polymerized polyethylene glycol film: XPS characterization and L929 cell proliferation tests, Acta Biomater. 4 (2008) 1745-1751, https://doi.org/10.1016/j.actbio.2008.06.013.
  14. J.H. Hubbell, Photon mass attenuation and energy-absorption coefficients, Int. J. Appl. Radiat. Isot. 33 (1982) 1269-1290, https://doi.org/10.1016/0020-708x(82)90248-4.
  15. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom-a program for calculating X-ray attenuation coefficients, Radiat. Phys. Chem. 71 (2004) 653-654, https://doi.org/10.1016/j.radphyschem.2004.04.040.
  16. K. Singh, H. Singh, V. Sharma, R. Nathuram, A. Khanna, R. Kumar, S. Singh Bhatti, H. Singh Sahota, Gamma-ray attenuation coefficients in bismuth borate glasses, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 194 (2002) 1-6, https://doi.org/10.1016/s0168-583x(02)00498-6.
  17. J. Kaewkhao, J. Laopaiboon, W. Chewpraditkul, Determination of effective atomic numbers and effective electron densities for Cu/Zn alloy, J. Quant. Spectrosc. Radiat. Transf. 109 (2008) 1260-1265, https://doi.org/10.1016/j.jqsrt.2007.10.007.
  18. A. Madhusudhan Rao, K. Narender, K. Gopal Kishan Rao, N. Gopi Krishna, R. Krishna Murthy, Mass attenuation coefficients, effective atomic and electron numbers of alkali halides for multi-energetic photons, Res. J. Phys. Sci. Res. J. Phys. Sci. 1 (2013).
  19. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gomez Cadenas, I. Gonz alez, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampen, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche, Geant4-a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506 (2003) 250-303, https://doi.org/10.1016/s0168-9002(03)01368-8.