DOI QR코드

DOI QR Code

Application of radiotracer technique in remediation of Zn(II) from aqueous solutions by dry cowdung powder

  • 투고 : 2021.03.15
  • 심사 : 2021.08.06
  • 발행 : 2022.02.25

초록

Heavy metal pollution is caused due to anthropogenic activities and is considered as a serious environmental problem which endangers human health and environment. The present study deals with biosorption, an eco-friendly technique for the removal of heavy metal Zn(II) from aqueous medium. Various natural materials have been explored for the uptake of metal ions, where most of them are physically or chemically enhanced. Dry cowdung powder (DCP) has been utilized as a low-cost, environmentally friendly humiresin without any pre-treatment, thus demonstrating the concept of Green Chemistry. Batch biosorption studies using 65Zn(II) tracer were performed and the impact of different experimental parameters was studied. Results revealed that at pH 6, 94 ± 2% of Zn(II) was effectively biosorbed in 5 min, at 303 K. The process was spontaneous and exothermic, following pseudo-second-order reaction. The mechanism of heavy metal biosorption employing green adsorbent was therefore elucidated in order to determine the optimal method for removing Zn(II) ions. DCP has a lot of potential in the wastewater treatment industry, as seen by its ability to meet 3A's affordability, adaptability, and acceptability criteria. As a result, DCP emerges as one of the most promising challengers for green chemistry and the zero-waste idea.

키워드

과제정보

We thank Gemological Institute of India (GII), Mumbai for providing the spectral facilities.

참고문헌

  1. M.V. Blanco, D.I. Cattoni, P. Carriquiriborde, J.R. Grigera, O. Chara, Kinetics of bioaccumulation of heavy metals in Odontesthes bonariensis is explained by a single and common mechanism, Ecol. Model. 274 (2014) 50-56. https://doi.org/10.1016/j.ecolmodel.2013.12.002
  2. P. Anastas, J. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998.
  3. L. Zhu, A.H. Younes, Z. Yuan, R.J. Clark, 5-Arylvinylene-2,2'-bipyridyls: bright "push-pull" dyes as componentes in fluorescente indicators for zinc ions, J. Photochem. Photobiol. Chem. 311 (2015) 1-15. https://doi.org/10.1016/j.jphotochem.2015.05.008
  4. J. Nriagu, Zinc toxicity in humans: Encycl. Environ. Heal. (2011) 801-807.
  5. L.M. Gaetke, C.K. Chow, Copper toxicity, oxidative stress, and antioxidant nutrients, Toxicology 189 (2003) 147-163. https://doi.org/10.1016/S0300-483X(03)00159-8
  6. A. Prasad, Zinc deficiency: its characterization and treatment, Met. Ions Biol. Syst. 41 (2004) 103-137.
  7. R.C. Sahu, R. Patel, B.C. Ray, Adsorption of Zn(II) on activated red mud: neutralized by CO2, Desalination 266 (2011) 93-97. https://doi.org/10.1016/j.desal.2010.08.007
  8. A.O. Oje, N.P. Uzoegwu, N.I. Onwurah, U.U. Nwodo, Environmental pollution levels of lead and zinc in ishiagu and uburu communities of Ebonyi state, Nigeria, Bull. Environ. Contam. Toxicol. 85 (2010) 313-317, https://doi.org/10.1007/s00128-010-0082-1.
  9. A. Goncalves, H. Nacke, D. Schwantes, G. Coelho, Heavy metal contamination in Brazilian agricultural soils due to application of fertilizers, in: Environ. Risk Assess. Soil Contam., In Tech Open, 2014, https://doi.org/10.5772/57268.
  10. X. Zhang, L. Yang, Y. Li, H. Li, W. Wang, B. Ye, Impacts of lead/zinc mining and smelting on the environment and human health in China, Environ. Monit. Assess. 184 (2012) 2261-2273, https://doi.org/10.1007/s10661-011-2115-6.
  11. A.I. Zouboulis, K.A. Matis, B.G. Lanara, Removal of cadmium from dilute solutions by hydroxylapatite II. Flotation studies, Separ. Sci. Technol. 32 (1997) 1755-1767. https://doi.org/10.1080/01496399708000733
  12. L. Charerntanyarak, Heavy metals removal by chemical coagulation and precipitation, Water Sci. Technol. 39 (1999) 135-138. https://doi.org/10.2166/wst.1999.0642
  13. A. Dabrowski, Z. Hubicki, P. Podkoscielny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere 56 (2004) 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006
  14. A. Witek-Krowiak, R.G. Szafran, S. Modelski, Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent, Desalination 265 (2011) 126-134. https://doi.org/10.1016/j.desal.2010.07.042
  15. R. Gandhimathi, S.T. Ramesh, V.M. Arun, P.V. Nidheesh, Biosorption of Cu(II) and Zn(II) ions from aqueous solution by water hyacinth (Eichhornia crassipes), Int. J. Environ. Waste Manag. 11 (2013) 365-386. https://doi.org/10.1504/IJEWM.2013.054243
  16. A. Buasri, N. Chaiyut, K. Tapang, S. Jaroensin, S. Panphrom, Equilibrium and kinetic studies of biosorption of Zn(II) ions from wastewater using modified corn cob, APCBEE Procedia 3 (2012) 60-64. https://doi.org/10.1016/j.apcbee.2012.06.046
  17. T. Lee, J.-W. Park, J.-H. Lee, Waste green sands as reactive media for the removal of zinc from water, Chemosphere 56 (2004) 571-581. https://doi.org/10.1016/j.chemosphere.2004.04.037
  18. C. Zhou, X. Gong, J. Han, R. Guo, Removal of Pb(II) and Zn(II) from aqueous solutions by raw crab shell: a comparative study, Water Environ. Res. 88 (2016) 374-383. https://doi.org/10.2175/106143016X14504669768174
  19. M. Gorgievski, D. Boziu, V. Stankoviu, N. Strbac, S. Serbula, Kinetics, equilibrium and mechanism of Cu2+, Ni2+ and Zn2+ ions biosorption using wheat straw., Ecol. Eng. 58 (n.d.) 113-122. https://doi.org/10.1016/j.ecoleng.2013.06.025
  20. X. Zuo, R. Balasubramanian, D. Fu, H. Li, Biosorption of copper, zinc and cadmium using sodium hydroxide immersed Cymbopogon schoenanthus L. Spreng (lemon grass), Ecol. Eng. 49 (2012) 186-189. https://doi.org/10.1016/j.ecoleng.2012.08.027
  21. A. Saeed, M.W. Akhter, M. Iqbal, Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Separ. Purif. Technol. 45 (2005) 25-31, https://doi.org/10.1016/j.seppur.2005.02.004.
  22. M. Corral-Bobadilla, A. Gonzalez-Marcos, E.P. Vergara-Gonzalez, F. Alba-Elias, Bioremediation of waste water to remove heavy metals using the spent mushroom substrate of Agaricus bisporus, Water (Switzerland) (2019) 11, https://doi.org/10.3390/w11030454.
  23. M. do S. Vale, R.F. do Nascimento, R.C. Leitao, S.T. Santaella, Cr and Zn biosorption by Aspergillus Niger, Environ. Times. Earth Sci 75 (2016) 462-473, https://doi.org/10.1007/s12665-016-5343-9.
  24. C. Chen, J. Wang, Cation (K+, Mg2+, Na+, Ca2+) release in Zn (II) biosorption by Saccharomyces cerevisiae, Huanjing Kexue 27 (2006) 2261-2267.
  25. F. Al-Tohami, M.A. Ackacha, R.A. Belaid, M. Hamaadi, Adsorption of Zn(II) ions from aqueous solutions by novel adsorbent: Ngella sativa seeds, APCBEE Procedia 5 (2013) 400-404. https://doi.org/10.1016/j.apcbee.2013.05.069
  26. A. Chergui, M. Bakhti, A. Chahboub, S. Haddoum, A. Selatnia, G. Junter, Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass, Desalination 206 (2007) 179-184. https://doi.org/10.1016/j.desal.2006.03.566
  27. S.Z. Sabae, M. Hazaa, S.A. Hallim, N. Awny, D. S, Bioremediation of Zn+2, Cu+2 and Fe+2 using Bacillus subtilis D215 and Pseudomonas putida biovar A D225, Biosci. Res. 3 (2006) 189-204.
  28. S.B. Akinde, O. Obire, Aerobic heterotrophic bacteria and petroleum-utilizing bacteria from cow dung and poultry manure, World J. Microbiol. Biotechnol. 24 (2008) 1999-2002, https://doi.org/10.1007/s11274-008-9700-z.
  29. N.S. Barot, H.K. Bagla, Biosorption of radiotoxic 90Sr by green adsorbent: dry cow dung powder, J. Radioanal. Nucl. Chem. 294 (2012) 81-86, https://doi.org/10.1007/s10967-011-1539-3.
  30. S.A. Shaikh, H.K. Bagla, Comparative study of 110mAg(I) removal from aqueous media by humic substances, J. Radioanal. Nucl. Chem. 322 (2019) 225-230, https://doi.org/10.1007/s10967-019-06691-7.
  31. N.S. Barot, H.K. Bagla, Eco-friendly waste water treatment by cow-dung powder (Adsorption studies of Cr(III), Cr (VI) & Cd(II) using Tracer Technique), Desalin. Water Treat. 38 (2012) 104-113. https://doi.org/10.1080/19443994.2012.664309
  32. N.S. Barot, H.K. Bagla, Studies on biosorption of Cr(VI) on a green resin : dry cow dung poeder and tracer technique, Radiochim. Acta 100 (2012) 833-842, https://doi.org/10.1524/ract.2012.1973.
  33. G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, Fifth Edit, Longman Scientific & Technical Copublished with John Wiley and Sons Inc., New York, 1989.
  34. G. Balasubramanian, S.A. Muthukumaraswamy, Element analysis with fundamental parameters using an XRF spectrum analysis MATLAB algorithm, Int. J. Eng. Appl. Sci. 3 (2016) 2394-3661. www.ijeas.org.
  35. S. Faust, O. Aly, Adsorption Processes for Water Treatment, first ed., Elsevier, 1986.
  36. K. Uthra, K. Kadirvelu, Biosorption of nickel using mixed cultures of Pseudomonas aeruginosa and Bacillus subtilis, Def. Life Sci. J. 2 (2017) 442, https://doi.org/10.14429/dlsj.2.12278.
  37. W.T. Tan, K. Majid, Removal of lead, cadmium and zinc by waste tea leaves, Environ. Technol. Lett. 9 (1988) 1223-1232. https://doi.org/10.1080/09593338809384685
  38. V. Munagapati, V.S. Yarramuthi, S.K. Nadavala, S.R. Alla, K. Abburi, Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics, Chem. Eng. J. 157 (2010) 357-365, https://doi.org/10.1016/j. cej.2009.11.015.
  39. M.V. Subbaiah, Y.S. Yun, Biosorption of nickel(II) from aqueous solution by the fungal Mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies, Biotechnol. Bioproc. Eng. 18 (2013) 280-288, https://doi.org/10.1007/s12257-012-0401-y.
  40. L. Langmuir, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38 (1916) 2221-2295. https://doi.org/10.1021/ja02268a002
  41. H. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385-470.
  42. O.E. Okeola FO, Freundlich and Langmuir isotherms parameters for adsorption of methylene blue by activated carbon derived from agrowastes, Adv Nat Appl Sci 4 (2010) 281-288.
  43. Z.Z. Abidin, A.N. Bakar, M.Y. Harun, M.M.A. Salleh, Biosorption of Zn (II) from aqueous solution by jatropha curcas press cake, J. Sci. Ind. Res. 73 (2014) 191-194.
  44. U. Israel, U.M. Eduok, Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust, Arch. Appl. Sci. Res. 4 (2012) 809-819. www.scholarsresearchlibrary.com.
  45. E. Valdman, L. Erijman, F.L.P. Pessoa, S.G.F. Leite, Continuous biosorption of Cu and Zn by immobilized waste biomass Sargassum sp, Process Biochem. 36 (2001) 869-873, https://doi.org/10.1016/S0032-9592(00)00288-0.
  46. M. Horsfall, F. Ogban, E.E. Akporhonor, Sorption of chromium(VI) from aqueous solution by cassava (Manihot sculenta cranz.), Waste Biomass, Chem. Biodivers. 3 (2006) 161-174, https://doi.org/10.1002/cbdv.200690019.
  47. E. Bulut, M. Ozacar, Adsorption of malachite green ontobentonite: equilibrium and kinetic study and process design, Microporous Mesoporous Mater. 115 (2008) 234-246. https://doi.org/10.1016/j.micromeso.2008.01.039
  48. H.E. Bakouri, J. Usero, J. Morillo, A. Ouassini, Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies, Bioresour. Technol. 100 (2009) 4147-4155. https://doi.org/10.1016/j.biortech.2009.04.003
  49. R.R. Navarro, S. Wada, K. Tatsumi, Heavy metal precipitation by polycationepolyanion complex of PEI and its phosphonomethylated derivative, J. Hazard Mater. 123 (2005) 203-209. https://doi.org/10.1016/j.jhazmat.2005.03.048
  50. P. King, N. Rakesh, S. Beena, Y. Prsanna, V.S.R.K. Prasad, Biosorption of zinc onto Syzygium cumini L.: equilibrium and kinetic studies, Chem. Eng. J. 144 (2008) 181-187. https://doi.org/10.1016/j.cej.2008.01.019
  51. T.W. Tee, M.A.R. Khan, Removal of lead, cadmium and zinc by waste tea leaves, Environ. Technol. Lett. 9 (1988) 1223-1232. https://doi.org/10.1080/09593338809384685