DOI QR코드

DOI QR Code

Robust technique using magnetohydrodynamics for safety improvement in sodium-cooled fast reactor

  • Lee, Jong Hui (Department of Mechanical Engineering, Kyungpook National University) ;
  • Park, Il Seouk (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2021.04.15
  • Accepted : 2021.08.19
  • Published : 2022.02.25

Abstract

Among Generation IV reactors, the sodium-cooled fast reactor (SFR) is attracting attention as a system having great potential for commercial use. Gas entrainment is a thermal-hydraulic issue related to the safety problem of the reactor core in the SFR. Typically, a dipped plate or baffles are installed under the free surface to suppress gas entrainment. However, these approaches can cause gas entrainment in other locations and require many trial-and-error and verifications. In this study, a new strategy using magnetohydrodynamics to suppress gas entrainment in the SFR is proposed. In a counter-flow model, a judgment criterion of gas entrainment occurrence was developed for both water and liquid metal. Moreover, the gas entrainment can be completely suppressed by applying a magnetic field.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by Korea Government (Ministry of Science, ICT, and Future Planning - Grant No. NRF-2017M2B2A9A02039561, NRF-2017M2A8A4017283 and NRF-2019R1A2C3003890).

References

  1. A. Bamshad, O. Safarzadeh, Effect of the move towards Gen IV reactors in capacity expansion planning by total generation cost and environmental impact optimization, Nucl. Eng. Technol. 53 (4) (2020) 1369-1377.
  2. D.-W. Lim, C.-W. Lee, J.-Y. Lim, D. Hartanto, On the particle swarm optimization of cask shielding design for a prototype sodium-cooled fast reactor, Nucl. Eng. Technol. 51 (2019) 284-292. https://doi.org/10.1016/j.net.2018.09.007
  3. B. Merk, A. Stanculescu, P. Chellapandi, R. Hill, Progress in reliability of fast reactor operation and new trends to increased inherent safety, Appl. Energy 147 (2015) 104-116. https://doi.org/10.1016/j.apenergy.2015.02.023
  4. O. Olumayegun, M. Wang, G. Kelsall, Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular sodium-cooled fast reactor (SM-SFR), Appl. Energy 191 (2017) 436-453. https://doi.org/10.1016/j.apenergy.2017.01.099
  5. S. Yeom, J.-W. Han, S. Ryu, D. Kim, J.-H. Eoh, S.-R. Choi, Design and evaluation of reactor vault cooling system in PGSFR, Nucl. Eng. Des. 365 (2020) 1-14, 110717.
  6. D. Zhang, R. Xu, Y. Chen, B. Wang, C. Wang, W. Tian, S. Qiu, G.H. Su, Preliminary study of parameter uncertainty influence on thermal design and analysis for sodium heated once-through steam generator, Nucl. Eng. Des. 369 (2020) 1-8, 110858.
  7. N.H. Kim, J.B. Kim, S.K. Kim, Applicability of the induction bending process to the P91 pipe of the PGSFR, Nucl. Eng. Technol. 53 (2020) 1580-1586.
  8. L. Cristofano, M. Nobili, G. Caruso, Experimental study on unstable free surface vortices and gas entrainment onset conditions, Exp. Therm. Fluid Sci. 52 (2014) 221-229. https://doi.org/10.1016/j.expthermflusci.2013.09.015
  9. T. Ezure, N. Kimura, K. Hayashi, H. Kamide, Transient behavior of gas entrainment caused by surface vortex, Heat Tran. Eng. 29 (2008) 659-666. https://doi.org/10.1080/01457630801980574
  10. N. Kimura, T. Ezure, H. Miyakoshi, T. Fukuda, Experimental study on gas entrainment due to nonstationary vortex in a sodium cooled fast reactorcomparison of onset conditions between sodium and water, J. Eng. Gas Turbines Power 132 (2010) 1-6, 102908.
  11. T. Sakai, Y. Eguchi, H. Monji, K. Ito, H. Ohshima, Proposal of design criteria for gas entrainment from vortex dimples based on a computational fluid dynamics method, Heat Tran. Eng. 29 (2010) 731-739. https://doi.org/10.1080/01457630801981739
  12. D. Tenchine, Some thermal hydraulic challenges in sodium cooled fast reactors, Nucl. Eng. Des. 240 (2010) 1195-1217. https://doi.org/10.1016/j.nucengdes.2010.01.006
  13. D. Tenchine, V. Barthel, U. Bieder, F. Ducros, G. Fauchet, C. Fournier, B. Mathieu, F. Perdu, P. Quemere, S. Vandroux, Status of TRIO_U code for sodium cooled fast reactors, Nucl. Eng. Des. 242 (2012) 307-315. https://doi.org/10.1016/j.nucengdes.2011.10.026
  14. D. Tenchine, C. Fournier, Y. Dolias, Gas entrainment issues in sodium cooled fast reactors, Nucl. Eng. Des. 270 (2014) 302-311. https://doi.org/10.1016/j.nucengdes.2014.02.002
  15. B. Moudjed, J. Excoffon, R. Riva, L. Rossi, Experimental study of gas entrainment from surface swirl, Nucl. Eng. Des. 310 (2016) 351-362. https://doi.org/10.1016/j.nucengdes.2016.10.019
  16. H. Monji, T. Shinozaki, H. Kamide, T. Sakai, Effect of experimental conditions on gas core length and downward velocity of free surface vortex in cylindrical vessel, J. Eng. Gas Turbines Power 132 (2010) 1-8, 012901.
  17. L. Cristofano, M. Nobili, G.P. Romano, G. Caruso, Investigation on bathtub vortex flow field by particle image velocimetry, Exp. Therm. Fluid Sci. 74 (2016) 130-142. https://doi.org/10.1016/j.expthermflusci.2015.12.005
  18. D. Guenadou, P. Aubert, J.-P. Descamps, Analysis of the gas entrainment by vortex in the upper plenum of the ASTRID reactor mock-up, 12th International Topical Meeting on nuclear reactor thermal-Hydraulics, operation and safety (NUTHOS-12), Qindao, China, 2011. October 14-18.
  19. T. Ezure, N. Kimura, H. Miyakoshi, H. Kamide, Experimental investigation on bubble characteristics entrained by surface vortex, Nucl. Eng. Des. 241 (2011) 4575-4584. https://doi.org/10.1016/j.nucengdes.2010.09.021
  20. Y. Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, R. Novakovic, Thermophysical properties of the liquid GaeIneSn eutectic alloy, J. Chem. Eng. Data 59 (2014) 757-763. https://doi.org/10.1021/je400882q
  21. E. Nguena, D. Danovitch, J. Sylvestre, R. Langlois, S. Martel, Gallium liquid metal embrittlement of tin-based solder alloys, Metall. Mater. Trans. 51 (2020) 6222-6233. https://doi.org/10.1007/s11661-020-06041-3
  22. Y. Ji, H. Yan, X. Xiao, J. Xu, Y. Li, C. Chang, Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates, Appl. Therm. Eng. 166 (2020) 1-6, 114649.
  23. C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  24. S.V. Patankar, D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in there-dimensional parabolic flows, Int. J. Heat Mass Tran. 15 (1972) 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  25. J.H. Lee, S. Han, H.-J. Cho, I.S. Park, Numerical and experimental study of the meniscus vortex core in a water model of continuous casting mold, Metall. Mater. Trans. B 52 (2021) 178-189. https://doi.org/10.1007/s11663-020-02006-4
  26. C.H. Sohn, J.H. Son, I.S. Park, Numerical analysis of vortex core phenomenon during draining from cylinder tank for various initial swirling speeds and various tank and drain port sizes, J. Hydrodyn. 25 (2013) 183-195. https://doi.org/10.1016/s1001-6058(13)60353-4
  27. J.H. Son, J.H. Lee, I.S. Park, Electromagnetic vortex suppression to prevent air core phenomenon for draining of electrically conducting liquids, J. Mech. Sci. Technol. 33 (2019) 2711-2724. https://doi.org/10.1007/s12206-019-0518-4
  28. J.H. Lee, J.H. Son, I.S. Park, Magnetohydrodynamics around a cylindrical wire carrying electric currents, J. Mech. Sci. Technol. 34 (2020) 1567-1579. https://doi.org/10.1007/s12206-020-0319-9