DOI QR코드

DOI QR Code

Comparison of X-ray computed tomography and magnetic resonance imaging to detect pest-infested fruits: A pilot study

  • Kim, Taeyun (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Lee, Jaegi (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Sun, Gwang-Min (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Park, Byung-Gun (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Park, Hae-Jun (Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute) ;
  • Choi, Deuk-Soo (Plant Quarantine Technology Center, Animal and Plant Quarantine Agency) ;
  • Ye, Sung-Joon (Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University)
  • 투고 : 2021.03.10
  • 심사 : 2021.07.13
  • 발행 : 2022.02.25

초록

Non-destructive testing (NDT) technology is a widely used inspection method for agricultural products. Compared with the conventional inspection method, there is no extensive sample preparation for NDT technology, and the sample is not damaged. In particular, NDT technology is used to inspect the internal structure of agricultural products infested by pests. The introduction and spread of pests during the import and export process can cause significant damage to the agricultural environment. Until now, pest detection in agricultural products and quarantine processes have been challenging because they used external inspection methods. However, NDT technology is advantageous in these inspection situations. In this pilot study, we investigated the feasibility of X-ray computed tomography (X-ray CT) and magnetic resonance imaging (MRI) to identify pest infestation in agricultural products. Three kinds of artificially pest-infested fruits (mango, tangerine, and chestnut) were non-destructively inspected using X-ray CT and MRI. X-ray CT was able to identify all pest infestations in fruits, while MRI could not detect the pest-infested chestnut. In addition, X-ray CT was superior to the quarantine process than MRI based on the contrast-to-noise ratio (CNR), image acquisition time, and cost. Therefore, X-ray CT is more appropriate for the pest quarantine process of fruits than MRI.

키워드

과제정보

This research was supported by a fund (PQ20201B010) by Research of Animal and Plant Quarantine Agency, South Korea. The authors would like to thank to the Soonchunhyang Institute of Medi-Bio Science (SIMS) and the Korea Research Institute of Bioscience and Biotechnology (KRIBB) for helping to support X-ray CT and MRI scan.

참고문헌

  1. H. Gao, F. Zhu, J. Cai, A review of non-destructive detection for fruit quality, IFIP Adv. Inf. Commun. Technol. 317 (2010) 133-140, https://doi.org/10.1007/978-3-642-12220-0_21.
  2. Y.K. Zhu, G.Y. Tian, R.S. Lu, H. Zhang, A review of optical NDT technologies, Sensors 11 (2011) 7773-7798, https://doi.org/10.3390/s110807773.
  3. D. Saengchantr, S. Srisatit, N. Chankow, Development of gamma ray scanning coupled with computed tomographic technique to inspect a broken pipe structure inside laboratory scale vessel, Nucl. Eng. Technol. 51 (2019) 800-806, https://doi.org/10.1016/j.net.2018.12.022.
  4. N. Ekramirad, A.A. Adedeji, R. Alimardani, A review of non-destructive methods for detection of insect infestation in fruits and vegetables, Innov. Food Res. 2 (2016) 6-12.
  5. S. Choi, H. Cho, C.J. Lissenden, Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves, Nucl. Eng. Technol. 50 (2018) 890-898, https://doi.org/10.1016/j.net.2018.04.011.
  6. A.A. Gowen, B.K. Tiwari, P.J. Cullen, K. McDonnell, C.P. O'Donnell, Applications of thermal imaging in food quality and safety assessment, Trends Food Sci. Technol. 21 (2010) 190-200, https://doi.org/10.1016/j.tifs.2009.12.002.
  7. K. Kim, H. Jung, Nondestructive testing of residual stress on the welded part of butt-welded A36 plates using electronic speckle pattern interferometry, Nucl. Eng. Technol. 48 (2016) 259-267, https://doi.org/10.1016/j.net.2015.10.008.
  8. Z.D. Wang, Y. Gu, Y.S. Wang, A review of three magnetic NDT technologies, J. Magn. Magn Mater. 324 (2012) 382-388, https://doi.org/10.1016/j.jmmm.2011.08.048.
  9. E.G. Barcelon, S. Tojo, K. Watanabe, Relating X-ray absorption and some quality characteristics of mango fruit (Mangifera indica L.), J. Agric. Food Chem. 47 (1999) 3822-3825, https://doi.org/10.1021/jf980690e.
  10. J. Lammertyn, T. Dresselaers, P. Van Hecke, P. Jancsok, M. Wevers, B.M. Nicolai, MRI and X-ray CT study of spatial distribution of core breakdown in "Conference" pears, Magn. Reson. Imaging 21 (2003) 805-815, https://doi.org/10.1016/S0730-725X(03)00105-X.
  11. C. Vestergaard, J. Risum, J. Adler-Nissen, Quantification of salt concentrations in cured pork by computed tomography, Meat Sci. 68 (2004) 107-113, https://doi.org/10.1016/j.meatsci.2004.02.011.
  12. B.M. Nicolai, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K.I. Theron, J. Lammertyn, Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review, Postharvest Biol. Technol. 46 (2007) 99-118, https://doi.org/10.1016/j.postharvbio.2007.06.024.
  13. B.M. Nicolai, T. Defraeye, B. De Ketelaere, E. Herremans, M.L.A.T.M. Hertog, W. Saeys, A. Torricelli, T. Vandendriessche, P. Verboven, Nondestructive measurement of fruit and vegetable quality, Annu. Rev. Food Sci. Technol. 5 (2014) 285-312, https://doi.org/10.1146/annurev-food-030713-092410.
  14. P. Chen, M.J. McCarthy, R. Kauten, NMR for internal quality evaluation of fruits and vegetables, Trans. Am. Soc. Agric. Eng. 32 (1989) 1747-1753, https://doi.org/10.13031/2013.31217.
  15. R.P. Haff, N. Toyofuku, X-ray detection of defects and contaminants in the food industry, Sens. Instrum. Food Qual. Saf. 2 (2008) 262-273, https://doi.org/10.1007/s11694-008-9059-8.
  16. L. Schoeman, P. Williams, A. du Plessis, M. Manley, X-ray micro-computed tomography (µCT) for non-destructive characterisation of food microstructure, Trends Food Sci. Technol. 47 (2016) 10-24, https://doi.org/10.1016/j.tifs.2015.10.016.
  17. Z. Wang, E. Herremans, S. Janssen, D. Cantre, P. Verboven, B. Nicolai, Visualizing 3D food microstructure using tomographic methods: advantages and disadvantages, Annu. Rev. Food Sci. Technol. 9 (2018) 323-343, https://doi.org/10.1146/annurev-food-030117-012639.
  18. T. Kamal, S. Cheng, I.A. Khan, K. Nawab, T. Zhang, Y. Song, S. Wang, M. Nadeem, M. Riaz, M.A.U. Khan, B.W. Zhu, M. Tan, Potential uses of LF-NMR and MRI in the study of water dynamics and quality measurement of fruits and vegetables, J. Food Process. Preserv. 43 (2019) 1-21, https://doi.org/10.1111/jfpp.14202.
  19. Z. Du, Y. Hu, N. Ali Buttar, A. Mahmood, X-ray computed tomography for quality inspection of agricultural products: a review, Food Sci. Nutr. 7 (2019) 3146-3160, https://doi.org/10.1002/fsn3.1179.
  20. Z. Du, X. Zeng, X. Li, X. Ding, J. Cao, W. Jiang, Recent advances in imaging techniques for bruise detection in fruits and vegetables, Trends Food Sci. Technol. 99 (2020) 133-141, https://doi.org/10.1016/j.tifs.2020.02.024.
  21. G.N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1. Description of system, Br. J. Radiol. 46 (1973) 1016-1022, https://doi.org/10.1259/0007-1285-46-552-1016.
  22. S. Jarolmasjed, C.Z. Espinoza, S. Sankaran, L.R. Khot, Postharvest bitter pit detection and progression evaluation in "Honeycrisp" apples using computed tomography images, Postharvest Biol. Technol. 118 (2016) 35-42, https://doi.org/10.1016/j.postharvbio.2016.03.014.
  23. A. Suresh, S. Neethirajan, Real-time 3D visualization and quantitative analysis of internal structure of wheat kernels, J. Cereal. Sci. 63 (2015) 81-87, https://doi.org/10.1016/j.jcs.2015.03.006.
  24. E. Herremans, P. Verboven, T. Defraeye, S. Rogge, Q.T. Ho, M.L.A.T.M. Hertog, B.E. Verlinden, E. Bongaers, M. Wevers, B.M. Nicolai, X-ray CT for quantitative food microstructure engineering: the apple case, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 324 (2014) 88-94, https://doi.org/10.1016/j.nimb.2013.07.035.
  25. E. Herremans, P. Verboven, M.L.A.T.M. Hertog, D. Cantre, M. van Dael, T. de Schryver, L. van Hoorebeke, B.M. Nicolai, Spatial development of transport structures in apple (Malus domestica Borkh.) fruit, Front. Plant Sci. 6 (2015) 1-14, https://doi.org/10.3389/fpls.2015.00679.
  26. I. Alba-Alejandre, J. Alba-Tercedor, F.E. Vega, Micro-CT to document the coffee bean weevil, araecerus fasciculatus (Coleoptera: anthribidae), inside field-collected coffee berries (coffea canephora), Insects 9 (2018), https://doi.org/10.3390/insects9030100.
  27. I. Alba-Alejandre, J. Alba-Tercedor, F.E. Vega, Observing the devastating coffee berry borer (Hypothenemus hampei) inside the coffee berry using microcomputed tomography, Sci. Rep. 8 (2018) 1-9, https://doi.org/10.1038/s41598-018-35324-4.
  28. P. Mansfield, Multi-planar image formation using {NMR} spin echoes, J. Phys. C Solid State Phys. 10 (1977) L55-L58, https://doi.org/10.1088/0022-3719/10/3/004.
  29. M. Koizumi, F. Ihara, K. Yaginuma, H. Kano, T. Haishi, Observation of the peach fruit moth, Carposina sasakii, larvae in young apple fruit by dedicated micromagnetic resonance imaging, J. Insect Sci. 10 (2010), https://doi.org/10.1673/031.010.14105.
  30. T. Haishi, H. Koizumi, T. Arai, M. Koizumi, H. Kano, Rapid detection of infestation of apple fruits by the peach fruit moth, carposina sasakii matsumura, larvae using a 0.2-T dedicated magnetic resonance imaging apparatus, Appl. Magn. Reson. 41 (2011) 1-18, https://doi.org/10.1007/s00723-011-0222-8.
  31. E. Herremans, A. Melado-Herreros, T. Defraeye, B. Verlinden, M. Hertog, P. Verboven, J. Val, M.E. Fernandez-Valle, E. Bongaers, P. Estrade, M. Wevers, P. Barreiro, B.M. Nicolai, Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars, Postharvest Biol. Technol. 87 (2014) 42-50, https://doi.org/10.1016/j.postharvbio.2013.08.008.