DOI QR코드

DOI QR Code

Numerical optimization of transmission bremsstrahlung target for intense pulsed electron beam

  • Yu, Xiao (State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University) ;
  • Shen, Jie (Nuclear and Radiation Safety Center, Ministry of Ecology and Environment of China) ;
  • Zhang, Shijian (School of Physics, Beihang University) ;
  • Zhang, Jie (Nuclear and Radiation Safety Center, Ministry of Ecology and Environment of China) ;
  • Zhang, Nan (School of Physics, Beihang University) ;
  • Egorov, Ivan Sergeevich (National Research Tomsk Polytechnic University) ;
  • Yan, Sha (State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University) ;
  • Tan, Chang (Shaanxi Key Laboratory of Plasma Physics and Applied Technology, Xi' an Aerospace Propulsion Institute) ;
  • Remnev, Gennady Efimovich (School of Physics, Beihang University) ;
  • Le, Xiaoyun (School of Physics, Beihang University)
  • 투고 : 2020.11.26
  • 심사 : 2021.08.17
  • 발행 : 2022.02.25

초록

The optimization of a transmission type bremsstrahlung conversion target was carried out with Monte Carlo code FLUKA for intense pulsed electron beams with electron energy of several hundred keV for maximum photon fluence. The photon emission intensity from electrons with energy ranging from 300 keV to 1 MeV on tungsten, tantalum and molybdenum targets was calculated with varied target thicknesses. The research revealed that higher target material element number and electron energy leads to increased photon fluence. For a certain target material, the target thickness with maximum photon emission fluence exhibits a linear relationship with the electron energy. With certain electron energy and target material, the thickness of the target plays a dominant role in increasing the transmission photon intensity, with small target thickness the photon flux is largely restricted by low energy loss of electrons for photon generation while thick targets may impose extra absorption for the generated photons. The spatial distribution of bremsstrahlung photon density was analyzed and the optimal target thicknesses for maximum bremsstrahlung photon fluence were derived versus electron energy on three target materials for a quick determination of optimal target design.

키워드

과제정보

This work is supported by the National Natural Science Foundation of China by Contract No. 11875084, 12075024, and China Postdoctoral Science Foundation. Also, Xiao Yu would like to express gratitude to Miss Meina Fang for the surveillance of the servers used in this research.

참고문헌

  1. R. Behling, Medical X-ray sources now and for the future, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 873 (2017) 43-50, https://doi.org/10.1016/j.nima.2017.05.038.
  2. E. Shefer, A. Altman, R. Behling, R. Goshen, L. Gregorian, Y. Roterman, I. Uman, N. Wainer, Y. Yagil, O. Zarchin, State of the art of ct detectors and sources: a literature review, Curr. Radiol. Rep. 1 (2013) 76-91, https://doi.org/10.1007/s40134-012-0006-4.
  3. R. Behling, Modern Diagnosticx-Ray Sources: Technology, Manufacturing, reliability, 2015, https://doi.org/10.1201/b18655.
  4. G. Zentai, X-ray imaging for homeland security, Int. J. Signal Imag. Syst. Eng. 3 (2010) 13-20, https://doi.org/10.1504/IJSISE.2010.034628.
  5. S.V. Chakhlov, S.V. Kasyanov, V.A. Kasyanov, S.P. Osipov, M.M. Stein, A.M. Stein, S. Xiaoming, Betatron application in mobile and relocatable inspection systems for freight transport control, J. Phys. Conf. Ser. (2016), 012024, https://doi.org/10.1088/1742-6596/671/1/012024.
  6. C. Tang, H. Chen, Y. Liu, X. Wang, Low-energy linacs and their applications in tsinghua university. 23rd Int. Linear Accel. Conf. LINAC 2006 - Proc., 2006, pp. 256-258.
  7. M. Bartscher, U. Hilpert, J. Goebbels, G. Weidemann, Enhancement and proof of accuracy of industrial computed tomography (CT) measurements, CIRP Ann.- Manuf. Technol. 56 (2007) 495-498, https://doi.org/10.1016/j.cirp.2007.05.118.
  8. A. du Plessis, S.G. le Roux, A. Guelpa, Comparison of medical and industrial X-ray computed tomography for non-destructive testing, Case Stud. Non-destruct. Test. Eval. 6 (2016) 17-25, https://doi.org/10.1016/j.csndt.2016.07.001.
  9. S. Carmignato, W. Dewulf, R. Leach, Industrial X-Ray Computed Tomography, 2017, https://doi.org/10.1007/978-3-319-59573-3.
  10. H. Sugie, M. Tanemura, V. Filip, K. Iwata, K. Takahashi, F. Okuyama, Carbon nanotubes as electron source in an x-ray tube, Appl. Phys. Lett. 78 (2001) 2578-2580, https://doi.org/10.1063/1.1367278.
  11. A. Ihsan, S.H. Heo, S.O. Cho, Optimization of X-ray target parameters for a high-brightness microfocus X-ray tube, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 264 (2007) 371-377, https://doi.org/10.1016/j.nimb.2007.09.023.
  12. L. Auditore, R.C. Barna, D. De Pasquale, A. Italiano, D. Loria, A. Trifiro, M. Trimarchi, Design of a 5 MeV electron linac based X-ray source, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 240 (2005) 913-922, https://doi.org/10.1016/j.nimb.2005.06.205.
  13. M. Gambaccini, P. Cardarelli, A. Taibi, A. Franconieri, G. Di Domenico, M. Marziani, R.C. Barn, L. Auditore, E. Morgana, D. Loria, A. Trifir, M. Trimarchi, Measurement of focal spot size in a 5.5 MeV linac, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 269 (2011) 1157-1165, https://doi.org/10.1016/j.nimb.2011.02.089.
  14. M.M. Nasseri, Determination of tungsten target parameters for transmission X-ray tube: a simulation study using Geant4, Nucl. Eng. Technol. 48 (2016) 795-798, https://doi.org/10.1016/j.net.2016.01.006.
  15. H.J. Kim, H.N. Kim, H.S. Raza, H.B. Park, S.O. Cho, An intraoral miniature X-ray tube based on carbon nanotubes for dental radiography, Nucl. Eng. Technol. 48 (2016) 799-804, https://doi.org/10.1016/j.net.2016.01.012.
  16. C. Tang, H. Chen, Y. Liu, Electron linacs for cargo inspection and other industrial applications. Int. Top. Meet. Nucl. Res. Appl, . Util. Accel., 2009.
  17. I.S. Egorov, M.I. Kaikanov, E.I. Lukonin, G.E. Remnev, A.V. Stepanov, The Astra repetitive-pulse electron accelerator, Instrum. Exp. Tech. 56 (2013) 568-570, https://doi.org/10.1134/S0020441213050035.
  18. A. Nashilevskiy, I. Egorov, D. Ponomarev, V. Ezhov, G. Kholodnaya, G. Remnev, A high repetition rate electron accelerator with a water Blumlein and a matching transformer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 959 (2020) 163565, https://doi.org/10.1016/j.nima.2020.163565.
  19. A. Poloskov, I. Egorov, A. Nashilevskiy, V. Ezhov, E. Smolyanskiy, M. Serebrennikov, G. Renmev, Submicrosecond electron accelerator based on pulsed transformer, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 969 (2020) 163951, https://doi.org/10.1016/j.nima.2020.163951.
  20. G. Kholodnaya, R. Sazonov, D. Ponomarev, T. Guzeeva, Plasma chemical conversion of sulphur hexafluoride initiated by a pulsed electron beam, Radiat. Phys. Chem. 130 (2017) 273-276, https://doi.org/10.1016/j.radphyschem.2016.08.018.
  21. R. Sazonov, G. Kholodnaya, D. Ponomarev, O. Lapteva, F. Konusov, R. Gadirov, I. Zhirkov, Pulsed plasma chemical synthesis of TiO2@TixCyOz nanocomposite, Fullerenes Nanotub, Carbon Nanostructures 29 (2021) 567-575, https://doi.org/10.1080/1536383X.2020.1871331.
  22. A.V. Mostovshchikov, A.P. Ilyin, I.S. Egorov, D.V. Ismailov, Thermal stability of iron micro- and nanopowders after electron beam irradiation, Key Eng. Mater. 712 (2016) 60-64. https://doi.org/10.4028/www.scientific.net/kem.712.60.
  23. A.V. Mostovshchikov, A.P. Ilyin, I.S. Egorov, Effect of electron beam irradiation on the thermal properties of the aluminum nanopowder, Radiat. Phys. Chem. 153 (2018) 156-158, https://doi.org/10.1016/j.radphyschem.2018.09.024.
  24. G. Kholodnaya, R. Sazonov, D. Ponomarev, Plasma chemical purification of flue gases using pulsed electron beams, J. Phys. Conf. Ser. 1115 (2018), 022028, https://doi.org/10.1088/1742-6596/1115/2/022028.
  25. G. Kholodnaya, I. Egorov, R. Sazonov, M. Serebrennikov, A. Poloskov, D. Ponomarev, I. Zhirkov, Study of the conditions for the effective initiation of plasma-chemical treatment of flue gas under the influence of a pulsed electron beam, Laser Part. Beams 38 (2020) 197-203, https://doi.org/10.1017/S0263034620000257.
  26. M. Siwek, T. Edgecock, Application of electron beam water radiolysis for sewage sludge treatment-a review, Environ. Sci. Pollut. Res. (2020), https://doi.org/10.1007/s11356-020-10643-0.
  27. S. Sokovnin, An electron beam technology of surface disinfection of the packed egg, Food Bioprod. Process. 127 (2021) 276-281, https://doi.org/10.1016/j.fbp.2021.03.009.
  28. B. Smith, S. Shayanfar, R. Walzem, C.Z. Alvarado, S.D. Pillai, Preserving fresh fruit quality by low-dose electron beam processing for vending distribution channels, Radiat. Phys. Chem. 168 (2020) 108540, https://doi.org/10.1016/j.radphyschem.2019.108540.
  29. T.V. Chizh, N.N. Loy, A.N. Pavlov, M.S. Vorobyov, S.Y. Doroshkevich, Low-energy electron beams for protection of grain crops from insect pests and diseases, J. Phys. Conf. Ser. 1115 (2018), https://doi.org/10.1088/1742-6596/1115/2/022025.
  30. S.D. Pillai, S. Shayanfar, Electron beam technology and other irradiation technology applications in the food industry, top, Curr. Chem. 375 (2017) 6, https://doi.org/10.1007/s41061-016-0093-4.
  31. A.A. Isemberlinova, A.V. Poloskov, I.S. Egorov, A.A. Kurilova, S.A. Nuzhnyh, G.E. Remnev, Influence of a pulsed electron beam on the sowing quality of wheat, Key Eng. Mater. 769 (2018) 172-180. https://doi.org/10.4028/www.scientific.net/KEM.769.172.
  32. V.L. Kudryavtseva, E.N. Bolbasov, D.V. Ponomarev, G.E. Remnev, S.I. Tverdokhlebov, The influence of pulsed electron beam treatment on properties of PLLA nonwoven materials produced by solution blow spinning, Bionanoscience 8 (2018) 131-139, https://doi.org/10.1007/s12668-017-0436-9.
  33. A.A. Rakina, T.I. Spriridonova, V.L. Kudryavtseva, I.M. Kolesniik, R.V. Sazonov, G.E. Remnev, S.I. Tverdokhlebov, Ibuprofen controlled release from E-beam treated polycaprolactone electrospun scaffolds, J. Phys. Conf. Ser. (2018), https://doi.org/10.1088/1742-6596/1115/3/032051.
  34. A.A. Volokhova, V.L. Kudryavtseva, T.I. Spiridonova, I. Kolesnik, S.I. Goreninskii, R.V. Sazonov, G.E. Remnev, S.I. Tverdokhlebov, Controlled drug release from electrospun PCL non-woven scaffolds via multi-layering and e-beam treatment, Mater. Today Commun. 26 (2021) 102134, https://doi.org/10.1016/j.mtcomm.2021.102134.
  35. L.S. Fifield, M. Pharr, D. Staack, S.D. Pillai, L. Nichols, J. McCoy, T. Faucette, T.T. Bisel, M. Huang, M.K. Hasan, L. Perkins, S.K. Cooley, M.K. Murphy, Direct comparison of gamma, electron beam and X-ray irradiation effects on single-use blood collection devices with plastic components, Radiat. Phys. Chem. 180 (2021) 109282, https://doi.org/10.1016/j.radphyschem.2020.109282.
  36. A.A. Burenina, T.P. Astafurova, E.N. Surnina, A.N. Butenkova, O.P. Kutenkov, E.A. Sosnin, M.A. Bol'shakov, V.V. Rostov, Effect of nanosecond repetitively pulsed X-ray radiation on the sowing quality of seeds and the productivity of wheat, High Energy Chem. 55 (2021) 324-328, https://doi.org/10.1134/s0018143921040056.
  37. A. Tallentire, A. Miller, Microbicidal effectiveness of X-rays used for sterilization purposes, Radiat. Phys. Chem. 107 (2015) 128-130, https://doi.org/10.1016/j.radphyschem.2014.09.012.
  38. A. Tallentire, A. Miller, J. Helt-Hansen, A comparison of the microbicidal effectiveness of gamma rays and high and low energy electron radiations, Radiat. Phys. Chem. 79 (2010) 701-704, https://doi.org/10.1016/j.radphyschem.2010.01.010.
  39. A.A. Isemberlinova, I.S. Egorov, S.A. Nuzhnyh, A. V Poloskov, E.A. Pokrovskaya, A. V Vertinskiy, F. V Konusov, E.S. Sukhikh, M. V Chubik, G.E. Remnev, The pulsed X-ray treatment of wheat against pathogenic fungi, Nucl. Instrum. Methods Phys. Res. B. 503 (2021) 75-78, https://doi.org/10.1016/j.nimb.2021.07.011.
  40. I. Egorov, A. Poloskov, M. Serebrennikov, G. Remnev, Self-bearing membrane exit window with the separate anode for sub-microsecond electron accelerator: exit window for sub-microsecond e-accelerator, Vacuum 173 (2020) 109111, https://doi.org/10.1016/j.vacuum.2019.109111.
  41. I. Egorov, X. Yu, A. Poloskov, M. Serebrennikov, X. Le, G. Remnev, Bremsstrahlung converter system with target in vacuum, Vacuum 187 (2021) 110149, https://doi.org/10.1016/j.vacuum.2021.110149.
  42. G. Battistoni, T. Boehlen, F. Cerutti, P.W. Chin, L.S. Esposito, A. Fasso, A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P.G. Ortega, J. Ranft, S. Roesler, P.R. Sala, V. Vlachoudis, G. Smirnov, Overview of the FLUKA code, Ann. Nucl. Energy 82 (2015) 10-18, https://doi.org/10.1016/j.anucene.2014.11.007.
  43. T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fasso, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, V. Vlachoudis, The FLUKA Code: developments and challenges for high energy and medical applications, Nucl. Data Sheets 120 (2014) 211-214, https://doi.org/10.1016/j.nds.2014.07.049.
  44. V. Vlachoudis, Flair: a powerful but user friendly graphical interface for FLUKA. Am. Nucl. Soc. - Int. Conf. Math. Comput. Methods React. Phys. 2009, M C, 2009, pp. 790-800.
  45. M.J. Berger, J. Coursey, M. Zucker, J. Chang, Stopping-power & range tables for electrons, protons, and helium ions, NIST Stand. Ref. Database. 124 (2017).
  46. I. Langmuir, Blodgett, Currents limited by space charge between coaxial cylinders, K.B. Phys. Rev. 22 (1923) 347-356, https://doi.org/10.1103/PhysRev.22.347.