DOI QR코드

DOI QR Code

Power peaking factor prediction using ANFIS method

  • 투고 : 2021.03.11
  • 심사 : 2021.08.06
  • 발행 : 2022.02.25

초록

Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

키워드

참고문헌

  1. A.M. Dias, F.C. Silva, Determination of the power density distribution in a PWR reactor based on neutron flux measurements at fixed reactor incore detectors, Ann. Nucl. Energy 90 (2016) 148-156. https://doi.org/10.1016/j.anucene.2015.12.002
  2. I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, B.S. Wee, M.S. Elias, J.A. Karim, Determination of neutron flux parameters in PUSPATI TRIGA Mark II research reactor, Malaysia, J. Radioanal. Nucl. Chem. 296 (2013) 1231-1237. https://doi.org/10.1007/s10967-012-2375-9
  3. I.H. Bae, M.G. Na, Y.J. Lee, G.C. Park, Calculation of the power peaking factor in a nuclear reactor using support vector regression models, Ann. Nucl. Energy 35 (2008) 2200-2205. https://doi.org/10.1016/j.anucene.2008.09.004
  4. L. Snoj, T. Zagar, M. Ravnik, S. Slavic, B. Zefran, D. Calic, A. Trkov, G. Zerovnik, A. Jazbec, TRIGLAV: a program package for TRIGA reactor calculations, Nucl. Eng. Des. 318 (2017) 24-34. https://doi.org/10.1016/j.nucengdes.2017.04.010
  5. Mohamad Hairie Rabir, Muhammad Rawi Md Zin, Mark Dennis Usang, alal Bayar, Na'im Syauqi Bin Hamzah, Neutron flux and power in RTP core-15, AIP Conf. Proc. 1704 (1) (2016).
  6. Man Gyun Na, Won Jung Dong, Mi Lee Sun, Ho Shin Sun, Estimation of the power peaking factor in a nuclear reactor using fuzzy neural networks, J. Kor. Nucl. Soc. 36 (2003) 420-429.
  7. In Ho Bae, Man Gyun Na, Yoon Joon Lee, Goon Cherl Park, Estimation of the power peaking factor in A nuclear reactor using support vector machines and uncertainty analysis, Nucl. Eng. Technol. 41 (2009) 1181-1190. https://doi.org/10.5516/NET.2009.41.9.1181
  8. Antonio C.F. Guimar~ aes, M. F. Lapa Celso, Power peak factor estimation using adaptive neural fuzzy inference system, Adv. Comput. Sci. Eng. (2008) 1-22.
  9. S.M. Mirvakili, F. Faghihi, H. Khalafi, Developing a computational tool for predicting physical parameters of a typical VVER-1000 core based on artificial neural network, Ann. Nucl. Energy 50 (2012) 82-93. https://doi.org/10.1016/j.anucene.2012.04.022
  10. H. Mazrou, M. Hamadouche, Application of artificial neural network for safety core parameters prediction in LWRRS, Prog. Nucl. Energy 44 (2004) 263-275. https://doi.org/10.1016/S0149-1970(04)90014-5
  11. J.L. Montes, J.L. Francois, J.J. Ortiz, C. Martin-del-Campo, R. Perusquia, Local power peaking factor estimation in nuclear fuel by artificial neural networks, Ann. Nucl. Energy 36 (2009) 121-130. https://doi.org/10.1016/j.anucene.2008.09.011
  12. R.M.G.P. Souza, J.M.L. Moreira, Power peak factor for protection systems - experimental data for developing a correlation, Ann. Nucl. Energy 33 (2006) 609-621. https://doi.org/10.1016/j.anucene.2006.02.008
  13. Saeid Niknafs, Reza Ebrahimpour, Saeid Amiri, Combined neural network for power peak factor estimation, Austr. J. Basic Appl. Sci 4 (2010) 3404-3410.
  14. A. Pirouzmand, M.K. Dehdashti, Estimation of relative power distribution and power peaking factor in a VVER-1000 reactor core using artificial neural networks, Prog. Nucl. Energy 85 (2015) 17-27. https://doi.org/10.1016/j.pnucene.2015.06.001
  15. A. Saeed, A. Rashid, Development of core monitoring system for a nuclear power plant using artificial neural network technique, Ann. Nucl. Energy 144 (2020) 107513. https://doi.org/10.1016/j.anucene.2020.107513
  16. M.K. Mayilvaganan, ANN and fuzzy logic models for the prediction of groundwater level of a watershed, Int. J. Comput. Sci. Eng. 3 (2011) 2523-2530.
  17. M.M. Sherzoy, Atterberg limits prediction comparing SVM with ANFIS model, J. Geosci. Eng. Environ. Technol. 2 (2017) 20. https://doi.org/10.24273/jgeet.2017.2.1.16
  18. Y. Gong, Y. Zhang, S. Lan, H. Wang, A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida, Water Resour. Manag. 30 (2016) 375-391. https://doi.org/10.1007/s11269-015-1167-8
  19. M.S. Zaghloul, R.A. Hamza, O.T. Iorhemen, J.H. Tay, Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors, J. Environ. Chem. Eng. 8 (2020) 103742. https://doi.org/10.1016/j.jece.2020.103742
  20. Jyh-Shing Roger Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cybern. 23 (1993) 665-685. https://doi.org/10.1109/21.256541
  21. Y. Chan-Uk, K. Keun-Chang, Performance comparison of ANFIS Models by input space partitioning methods, Symmetry 10 (700) (2018) 1-25.
  22. J.Y. Hoon, G. Chen, Fuzzy system modelling: an introduction', Encycl. Artif. Intell. 109 (2009) 734-743.
  23. Long Thanh Ngo, Binh Huy Pham, A type-2 fuzzy subtractive clustering algorithm, Mech. Eng. Technol. 125 (2012) 395-402. https://doi.org/10.1007/978-3-642-27329-2_54
  24. Jun Ying Chen, Qin Zheng, Ji Jia, A weighted mean subtractive clustering algorithm, Inf. Technol. J. 7 (2008) 356-360. https://doi.org/10.3923/itj.2008.356.360
  25. Mohamad Hairie Rabir, Julia Abdul Karim, Abi Muttaqin Jalal Bayar, Determination of New Core Configuration and Cycle Length Analysis for Triga Reactor', RnD Seminar, Agensi Nuklear Malaysia, 2018.
  26. Mohamad Hairie B. Rabir, Muhammad Rawi B. Mohamed Zin, Julia Bt Abdul Karim, Abi Muttaqin B. Jalal Bayar, Mark Dennis Anak Usang, Muhammad, KhairulAriff B. Mustafa, Na'imSyauqi B. Hamzah, Norfarizan Bt Mohd Said, Muhammad Husamuddin B. Jalil, Neutronics calculation of RTP core', AIP Conf. Proc. 1799 (2017), 020009.