Acknowledgement
This work was supported by the Dongguk University in South Korea Research Fund of 2021.
References
- S. Yang, Z. Yang, H. Wang, S. Watanabe, T. Shibayama, Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel, J. Nucl. Mater. 488 (2017) 215-221. https://doi.org/10.1016/j.jnucmat.2017.03.002
- S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
- S.M. Bruemmer, et al., Reviews for understanding and evaluation of irradiation-assisted stress corrosion cracking, EPRI TR-107159, 4068, final report (1996).
- H.T. Tang, Material reliability program: PWR internal material aging degradation mechanism screening and threshold values(MRP-175), EPRI TR-1012081 (2005).
- P.L. Andresen, F.P. Ford, S.M. Murphy, J.M. Perks, in: Proc. 4th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, NACE, Houston, TX, 1990, 1.83-1.121.
- G.S. Was, P.L. Andresen, Stress corrosion cracking behavior of alloys in aggressive nuclear reactor core environments, Corrosion 63 (2007) 19-45. https://doi.org/10.5006/1.3278331
- G.B. Olson, Designing a material world, Science 288 (2000) 993-998. https://doi.org/10.1126/science.288.5468.993
- M. Attaran, Strategic implications of RFID implementations in the retail industry supply chain, Int. J. RF Technol. Res. Appl. 2 (2011) 155-171.
- B. Berman, 3-D printing: the new industrial revolution, Bus. Horiz. 55 (2012) 155-162. https://doi.org/10.1016/j.bushor.2011.11.003
- R. Bogue, 3-D printing: the dawn of a new era in manufacturing? Assemb. Autom. 33 (2013) 307-311. https://doi.org/10.1108/AA-06-2013-055
- P. Freyer, Testing and Evaluation of Unirradiated and Neutron Irradiated Additively Manufactured Alloys, 6th NRC Workshop on Vendor Oversight Sponsored by the Office of New Reactors, 2018. Cleveland, U.S.A.
- B. Vayre, F. Vignat, Metallic additive manufacturing: state-of- the-art review and prospects, Mechanics and industry 13 (2012) 89-96. https://doi.org/10.1051/meca/2012003
- L. Yang, et al., Additive Manufacturing Metals: the Technology, Materials, Design and Production, Springer, 2017.
- M. Kang, D. Ye, G. Go, International development trend and technical issues of metal Additive manufacturing, J. Welding and Joining 34 (2016) 9-16. https://doi.org/10.5781/JWJ.2016.34.4.9
- J. Oh, H. Na, H. Choi, Technology trend of the additive manufacturing, J. Korean Powder Metall. Inst. 24 (2017) 1-14. https://doi.org/10.4150/KPMI.2017.24.1.1
- J. Choi, H. Kim, 3D printing technologies-A review, J. Korean Soc. Manuf. Pro. Eng. 14 (2015) 1-8.
- M. Calmunger, Effect of Temperature on Mechanical Response of Austenitic Materials, LIU-IEI-TEK-A-11/01236-SE, Linqueping University, 2011.
- O.K. Chopra, Degradation of LWR core internal materials due to neutron irradiation, NUREG/CR-7027 (2010).
- O.K. Chopra, A.S. Rao, A review of irradiation effects on LWR core internal materials-neutron embrittlement, J. Nucl. Mater., 412(2100)195-208. https://doi.org/10.1016/j.jnucmat.2011.02.059
- D. Huan, et al., Effects of Fe11+ ions irradiation on the microstructure and performance of selective laser melted 316Laustenitic stainless steels, Metals 10 (2020) 1140. https://doi.org/10.3390/met10091140
- J.C. King, D.V. Bossuyt, Irradiation performance testing of specimens produced by commercially available additive manufacturing techniques, Advanced methods for manufacturing program, Maryland, U.S.A (2016).
- D. Kong, et al., Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells, Electrochim, Acta 276 (2018) 293-303. https://doi.org/10.1016/j.electacta.2018.04.188
- N.P. Lavery, et al., Effects of hot isostatic pressing on the elastic modulus and tensile properties of 316L parts made by powder bed laser fusion, Mater. Sci. Eng. A 693 (2017) 186-213. https://doi.org/10.1016/j.msea.2017.03.100
- Y. Zhong, et al., Intergranular cellular segregation network structure strengthening 316L stainless steel prepared by selective laser melting, J. Nucl. Mater. 470 (2016) 170-176. https://doi.org/10.1016/j.jnucmat.2015.12.034
- E. Yasa, J.P. Kruth, Microstructure in investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting, Procedia Eng 19 (2011) 389-395. https://doi.org/10.1016/j.proeng.2011.11.130
- P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, Mater. Sci. Eng. A 529 (2011) 62-73. https://doi.org/10.1016/j.msea.2011.08.061
- H.E. Boyer, T.L. Gall (Eds.), Metals Handbook, Desk Edition, ASM International, Metals Park, Ohio, 1985.
- W.D. Callister Jr., Materials Science and Engineering - an Introduction, John Wiley, New York, 1992.
- Astm International, Standard specification for stainless steel bars and shapes for use in boilers and other pressure vessels, ASTM A479/A479M-20 (July 2020).
- H. Choo, et al., Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel, Mater. Des. 164 (2019) 107534. https://doi.org/10.1016/j.matdes.2018.12.006
- M. Shamsujjoha, et al., High strength and ductility of additively manufactured 316L stainless steel explained, Metall. Mater. Trans. 49 (2018) 3011-3027. https://doi.org/10.1007/s11661-018-4607-2
- T. Kurzynowski, et al., Correlation between process parameters, microstructure and properties of 316L stainless steel processed by selective laser melting, Mater. Sci. Eng. A 718 (2018) 64-73. https://doi.org/10.1016/j.msea.2018.01.103
- A. Riemer, et al., On the fatigue crack growth behavior in 316L stainless steel manufactured by selective laser melting, Eng. Fract. Mech. 120 (2014) 15-25. https://doi.org/10.1016/j.engfracmech.2014.03.008
- J.A. Cherry, et al., Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting, Int. J. Adv. Manuf. Technol. 76 (2015), 969-879.
- A.A. Deev, P.A. Kuznetcov, S.N. Petrov, Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method, Phys. Procedia 83 (2016) 789-796. https://doi.org/10.1016/j.phpro.2016.08.081
- R. Casati, J. Lemke, M. Vedani, Microstructure and fracture behavior of 316L austenitic stainless steel produced by selective laser melting, J. Mater. Sci. Technol. 32 (2016) 738-744. https://doi.org/10.1016/j.jmst.2016.06.016