Acknowledgement
This work was supported by the National Natural Science Foundation of China (Project No. 51909045, China); CNNC's young talents research project (CNNC2019YTEP-HEU01, China).
References
- K. Rehme, The structure of turbulence in rod bundles and the implications on natural mixing between the subchannels, Int. J. Heat Mass Tran. 35 (2) (Feb. 1992) 567-581, https://doi.org/10.1016/0017-9310(92)90291-Y.
- D.S. Rowe, B.M. Johnson, J.G. Knudsen, Implications concerning rod bundle crossflow mixing based on measurements of turbulent flow structure, Int. J. Heat Mass Tran. 17 (3) (Mar. 1974) 407-419, https://doi.org/10.1016/0017-9310(74)90012-X.
- C.M. Lee, Y.D. Choi, Comparison of thermo-hydraulic performances of large scale vortex flow (LSVF) and small scale vortex flow (SSVF) mixing vanes in 17 × 17 nuclear rod bundle, Nucl. Eng. Des. 237 (24) (Dec. 2007) 2322-2331, https://doi.org/10.1016/J.NUCENGDES.2007.04.011.
- W. Qu, J. Xiong, S. Chen, Z. Qiu, J. Deng, X. Cheng, PIV measurement of turbulent flow downstream of mixing vane spacer grid in 5×5 rod bundle, Ann. Nucl. Energy 132 (Oct. 2019) 277-287, https://doi.org/10.1016/J.ANUCENE.2019.04.016.
- H. Wang, D. Lu, Y. Liu, "PIV measurement and CFD analysis of the turbulent flow in a 3 × 3 rod bundle, Ann. Nucl. Energy 140 (Jun. 2020), https://doi.org/10.1016/J.ANUCENE.2019.107135, 107135.
- S.Y. Han, J.S. Seo, M.S. Park, Y.D. Choi, Measurements of the flow characteristics of the lateral flow in the 6 × 6 rod bundles with Tandem Arrangement Vanes, Nucl. Eng. Des. 239 (12) (Dec. 2009) 2728-2736, https://doi.org/10.1016/J.NUCENGDES.2009.09.026.
- A.C. Trupp, R.S. Azad, The structure of turbulent flow in triangular array rod bundles, Nucl. Eng. Des. 32 (1) (Apr. 1975) 47-84, https://doi.org/10.1016/0029-5493(75)90090-4.
- J. Xiong, R. Cheng, C. Lu, X. Chai, X. Liu, X. Cheng, CFD simulation of swirling flow induced by twist vanes in a rod bundle, Nucl. Eng. Des. 338 (Nov. 2018) 52-62, https://doi.org/10.1016/J.NUCENGDES.2018.08.003.
- Y. Wang, et al., CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR, Nucl. Eng. Technol. (Dec. 2019), https://doi.org/10.1016/J.NET.2019.12.012.
- J. Zang, X. Yan, Y. Li, X. Zeng, Y. Huang, "The flow resistance experiments of supercritical pressure water in 2 × 2 rod bundle, Int. J. Heat Mass Tran. 147 (Feb. 2020), https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.118873, 118873.
- Y. Wang, Y.M. Ferng, L.X. Sun, CFD assist in design of spacer-grid with mixingvane for a rod bundle, Appl. Therm. Eng. 149 (Feb. 2019) 565-577, https://doi.org/10.1016/J.APPLTHERMALENG.2018.12.090.
- X.-Z. Cui, K.-Y. Kim, Three-dimensional analysis of turbulent heat transfer and flow through mixing vane in A subchannel of nuclear reactor, J. Nucl. Sci. Technol. 40 (10) (Oct. 2003) 719-724, https://doi.org/10.1080/18811248.2003.9715412.
- W. K, T.-H. Chun, C.-H. Shin, D.-S. Oh, Numerical computation of heat transfer enhancement of a PWR rod bundle with mixing vane spacers, Nucl. Technol. 161 (1) (Jan. 2008) 69-79, https://doi.org/10.13182/NT08-A3914.
- M.A. Navarro, A.A.C. Santos, Evaluation of a numeric procedure for flow simulation of a 5 × 5 PWR rod bundle with a mixing vane spacer, Prog. Nucl. Energy 53 (8) (Nov. 2011) 1190-1196, https://doi.org/10.1016/J.PNUCENE.2011.08.002.
- G. Chen, Z. Zhang, Z. Tian, L. Li, X. Dong, H. Ju, Design of a CFD scheme using multiple RANS models for PWR, Ann. Nucl. Energy 102 (Apr. 2017) 349-358, https://doi.org/10.1016/J.ANUCENE.2016.12.030.
- X. Li, Y. Gao, Methods of simulating large-scale rod bundle and application to a 17 × 17 fuel assembly with mixing vane spacer grid, Nucl. Eng. Des. 267 (Feb. 2014) 10-22, https://doi.org/10.1016/J.NUCENGDES.2013.11.064.
- T. Cong, G. Su, S. Qiu, W. Tian, Applications of ANNs in flow and heat transfer problems in nuclear engineering: a review work, Prog. Nucl. Energy 62 (Jan. 2013) 54-71, https://doi.org/10.1016/J.PNUCENE.2012.09.003.
- J. Zhang, et al., Prediction of flow boiling heat transfer coefficient in horizontal channels varying from conventional to small-diameter scales by genetic neural network, Nucl. Eng. Technol. 51 (8) (Dec. 2019) 1897-1904, https://doi.org/10.1016/J.NET.2019.06.009.
- N. Amanifard, N. Nariman-Zadeh, M. Borji, A. Khalkhali, A. Habibdoust, Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms, Energy Convers. Manag. 49 (2) (Feb. 2008) 311-325, https://doi.org/10.1016/J.ENCONMAN.2007.06.002.
- D. Ma, T. Zhou, J. Chen, S. Qi, M. Ali Shahzad, Z. Xiao, Supercritical water heat transfer coefficient prediction analysis based on BP neural network, Nucl. Eng. Des. 320 (Aug. 2017) 400-408, https://doi.org/10.1016/J.NUCENGDES.2017.06.013.
- P.L.S. Serra, P.H.F. Masotti, M.S. Rocha, D.A. de Andrade, W.M. Torres, R.N. de Mesquita, Two-phase flow void fraction estimation based on bubble image segmentation using Randomized Hough Transform with Neural Network (RHTN), Prog. Nucl. Energy 118 (Jan. 2020), https://doi.org/10.1016/J.PNUCENE.2019.103133, 103133.
- H.M. Park, J.H. Lee, K.D. Kim, Wall temperature prediction at critical heat flux using a machine learning model, Ann. Nucl. Energy 141 (Jun. 2020), https://doi.org/10.1016/J.ANUCENE.2020.107334, 107334.
- N. Vaziri, A. Hojabri, A. Erfani, M. Monsefi, B. Nilforooshan, Critical heat flux prediction by using radial basis function and multilayer perceptron neural networks: a comparison study, Nucl. Eng. Des. 237 (4) (Feb. 2007) 377-385, https://doi.org/10.1016/J.NUCENGDES.2006.05.005.
- J. Li, T. Zhou, Z. Ju, Q. Huo, Z. Xiao, Sensitivity analysis of CHF parameters under flow instability by using a neural network method, Ann. Nucl. Energy 71 (Sep. 2014) 211-216, https://doi.org/10.1016/J.ANUCENE.2014.03.040.
- B.T. Jiang, J.S. Ren, P. Hu, F.Y. Zhao, Prediction of critical heat flux for water flow in vertical round tubes using support vector regression model, Prog. Nucl. Energy 68 (Sep. 2013) 210-222, https://doi.org/10.1016/J.PNUCENE.2013.07.004.
- Y. Mi, M. Ishii, L.H. Tsoukalas, Flow regime identification methodology with neural networks and two-phase flow models, Nucl. Eng. Des. 204 (1-3) (Feb. 2001) 87-100, https://doi.org/10.1016/S0029-5493(00)00325-3.
- R.N. de Mesquita, et al., Classification of natural circulation two-phase flow image patterns based on self-organizing maps of full frame DCT coefficients, Nucl. Eng. Des. 335 (Aug. 2018) 161-171, https://doi.org/10.1016/J.NUCENGDES.2018.05.019.
- J. Huang, H. Liu, W. Cai, Online in situ prediction of 3-D flame evolution from its history 2-D projections via deep learning, J. Fluid Mech. 875 (Sep. 2019), https://doi.org/10.1017/jfm.2019.545.R2.
- L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Comput. Methods Appl. Mech. Eng. 361 (Apr. 2020), https://doi.org/10.1016/J.CMA.2019.112732, 112732.
- T. Aaron, O.T. Schmidt, C. Tim, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis, J. Fluid Mech. 847 (2017) 821-867, https://doi.org/10.1017/jfm.2018.283.
- Z. Luo, J. Du, Z. Xie, Y. Guo, A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the nonstationary Navier-Stokes equations, Int. J. Numer. Methods Eng. 88 (1) (2011) 31-46, https://doi.org/10.1002/nme.3161.
- Xu Wang, Jiaqing Kou, Weiwei Zhang, Multi-fidelity surrogate reduced-order modeling of steady flow estimation, Int. J. Numer. Methods Fluid. (2020), https://doi.org/10.1002/fld.4850, 2020.
- L. Sirovich, Turbulence and the dynamics of coherent structures. I - coherent structures. II - symmetries and transformations. III - dynamics and scaling, Q. Appl. Math. 45 (3) (1987), https://doi.org/10.1090/qam/910463.
- Z. Karoutas, C. Gu, B. Sholin, 3-D flow analyses for design of nuclear fuel spacer, in: Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-Hydraulics, NURETH-7), New York, USA, 1995, pp. 3153-3174.
- G. Chen, Z. Zhang, Z. Tian, X. Dong, Y. Wang, CFD simulation for the optimal design and utilization of experiment to research the flow process in PWR, Ann. Nucl. Energy 94 (Aug. 2016) 1-9, https://doi.org/10.1016/J.ANUCENE.2016.02.007.
- G. Chen, Z. Zhang, Z. Tian, Optimal meshing methods and schemes for the simulation of assembly, Trans. Am. Nucl. Soc. 111 (2014) 1572-1575.
- C.C. Liu, Y.M. Ferng, C.K. Shih, CFD evaluation of turbulence models for flow simulation of the fuel rod bundle with a spacer assembly, Appl. Therm. Eng. 40 (Jul. 2012) 389-396, https://doi.org/10.1016/J.APPLTHERMALENG.2012.02.027.
- M.V. Holloway, D.E. Beasley, M.E. Conner, "Investigation of swirling flow in rod bundle subchannels using computational fluid dynamics," in International Conference on Nuclear Engineering, Proceedings, ICONE (2006), https://doi.org/10.1115/ICONE14-89068.
- M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (1979) 239-245, https://doi.org/10.1080/00401706.1979.10489755.
- D. Balduzzi, M. Frean, L. Leary, J.P. Lewis, K.W.D. Ma, B. McWilliams, "The shattered gradients problem: if resnets are the answer, then what is the question?," in 34th International Conference on Machine Learning, ICML 1 (2017) 536-549, 2017.