DOI QR코드

DOI QR Code

Agreement and Reliability between Clinically Available Software Programs in Measuring Volumes and Normative Percentiles of Segmented Brain Regions

  • Huijin Song (Department of Radiology, Seoul National University Hospital) ;
  • Seun Ah Lee (Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Sang Won Jo (Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Suk-Ki Chang (Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Yunji Lim (Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Yeong Seo Yoo (Department of Radiology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Jae Ho Kim (Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University Medical Center) ;
  • Seung Hong Choi (Department of Radiology, Seoul National University Hospital) ;
  • Chul-Ho Sohn (Department of Radiology, Seoul National University Hospital)
  • 투고 : 2022.01.28
  • 심사 : 2022.07.18
  • 발행 : 2022.10.01

초록

Objective: To investigate the agreement and reliability of estimating the volumes and normative percentiles (N%) of segmented brain regions among NeuroQuant (NQ), DeepBrain (DB), and FreeSurfer (FS) software programs, focusing on the comparison between NQ and DB. Materials and Methods: Three-dimensional T1-weighted images of 145 participants (48 healthy participants, 50 patients with mild cognitive impairment, and 47 patients with Alzheimer's disease) from a single medical center (SMC) dataset and 130 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset were included in this retrospective study. All images were analyzed with DB, NQ, and FS software to obtain volume estimates and N% of various segmented brain regions. We used Bland-Altman analysis, repeated measures ANOVA, reproducibility coefficient, effect size, and intraclass correlation coefficient (ICC) to evaluate inter-method agreement and reliability. Results: Among the three software programs, the Bland-Altman plot showed a substantial bias, the ICC showed a broad range of reliability (0.004-0.97), and repeated-measures ANOVA revealed significant mean volume differences in all brain regions. Similarly, the volume differences of the three software programs had large effect sizes in most regions (0.73-5.51). The effect size was largest in the pallidum in both datasets and smallest in the thalamus and cerebral white matter in the SMC and ADNI datasets, respectively. N% of NQ and DB showed an unacceptably broad Bland-Altman limit of agreement in all brain regions and a very wide range of ICC values (-0.142-0.844) in most brain regions. Conclusion: NQ and DB showed significant differences in the measured volume and N%, with limited agreement and reliability for most brain regions. Therefore, users should be aware of the lack of interchangeability between these software programs when they are applied in clinical practice.

키워드

참고문헌

  1. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991;82:239-259 https://doi.org/10.1007/BF00308809
  2. Scahill RI, Schott JM, Stevens JM, Rossor MN, Fox NC. Mapping the evolution of regional atrophy in Alzheimer's disease: unbiased analysis of fluid-registered serial MRI. Proc Natl Acad Sci U S A 2002;99:4703-4707 https://doi.org/10.1073/pnas.052587399
  3. Lehericy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, et al. Amygdalohippocampal MR volume measurements in the early stages of Alzheimer disease. AJNR Am J Neuroradiol 1994;15:929-937
  4. Chan D, Fox NC, Scahill RI, Crum WR, Whitwell JL, Leschziner G, et al. Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Ann Neurol 2001;49:433-442 https://doi.org/10.1002/ana.92
  5. Killiany RJ, Hyman BT, Gomez-Isla T, Moss MB, Kikinis R, Jolesz F, et al. MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 2002;58:1188-1196 https://doi.org/10.1212/WNL.58.8.1188
  6. Fox NC, Scahill RI, Crum WR, Rossor MN. Correlation between rates of brain atrophy and cognitive decline in AD. Neurology 1999;52:1687-1689 https://doi.org/10.1212/WNL.52.8.1687
  7. Cardenas VA, Chao LL, Studholme C, Yaffe K, Miller BL, Madison C, et al. Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiol Aging 2011;32:572-580 https://doi.org/10.1016/j.neurobiolaging.2009.04.011
  8. Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 2012;263:344-361 https://doi.org/10.1148/radiol.12110433
  9. Jack CR Jr, Albert MS, Knopman DS, McKhann GM, Sperling RA, Carrillo MC, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:257-262 https://doi.org/10.1016/j.jalz.2011.03.004
  10. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011;7:263-269 https://doi.org/10.1016/j.jalz.2011.03.005
  11. Johnson KA, Fox NC, Sperling RA, Klunk WE. Brain imaging in Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006213
  12. Fischl B. FreeSurfer. Neuroimage 2012;62:774-781 https://doi.org/10.1016/j.neuroimage.2012.01.021
  13. Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The insight ToolKit image registration framework. Front Neuroinform 2014;8:44
  14. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. FSL. Neuroimage 2012;62:782-790 https://doi.org/10.1016/j.neuroimage.2011.09.015
  15. Rebsamen M, Suter Y, Wiest R, Reyes M, Rummel C. Brain morphometry estimation: from hours to seconds using deep learning. Front Neurol 2020;11:244
  16. Park M, Moon WJ. Structural MR imaging in the diagnosis of Alzheimer's disease and other neurodegenerative dementia: current imaging approach and future perspectives. Korean J Radiol 2016;17:827-845 https://doi.org/10.3348/kjr.2016.17.6.827
  17. Brewer JB, Magda S, Airriess C, Smith ME. Fully-automated quantification of regional brain volumes for improved detection of focal atrophy in Alzheimer disease. AJNR Am J Neuroradiol 2009;30:578-580 https://doi.org/10.3174/ajnr.A1402
  18. Tanpitukpongse TP, Mazurowski MA, Ikhena J, Petrella JR; Alzheimer's Disease Neuroimaging Initiative. Predictive utility of marketed volumetric software tools in subjects at risk for Alzheimer disease: do regions outside the hippocampus matter? AJNR Am J Neuroradiol 2017;38:546-552 https://doi.org/10.3174/ajnr.A5061
  19. Storelli L, Rocca MA, Pagani E, Van Hecke W, Horsfield MA, De Stefano N, et al. Measurement of whole-brain and gray matter atrophy in multiple sclerosis: assessment with MR imaging. Radiology 2018;288:554-564 https://doi.org/10.1148/radiol.2018172468
  20. Lee JS, Kim C, Shin JH, Cho H, Shin DS, Kim N, et al. Machine learning-based individual assessment of cortical atrophy pattern in Alzheimer's disease spectrum: development of the classifier and longitudinal evaluation. Sci Rep 2018;8:4161
  21. Suh CH, Shim WH, Kim SJ, Roh JH, Lee JH, Kim MJ, et al. Development and validation of a deep learning-based automatic brain segmentation and classification algorithm for Alzheimer disease using 3D T1-weighted volumetric images. AJNR Am J Neuroradiol 2020;41:2227-2234 https://doi.org/10.3174/ajnr.A6848
  22. Wang C, Beadnall HN, Hatton SN, Bader G, Tomic D, Silva DG, et al. Automated brain volumetrics in multiple sclerosis: a step closer to clinical application. J Neurol Neurosurg Psychiatry 2016;87:754-757 https://doi.org/10.1136/jnnp-2015-312304
  23. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI). Alzheimers Dement 2005;1:55-66 https://doi.org/10.1016/j.jalz.2005.06.003
  24. Park JE, Han K, Sung YS, Chung MS, Koo HJ, Yoon HM, et al. Selection and reporting of statistical methods to assess reliability of a diagnostic test: conformity to recommended methods in a peer-reviewed journal. Korean J Radiol 2017;18:888-897 https://doi.org/10.3348/kjr.2017.18.6.888
  25. Olejnik S, Algina J. Measures of effect size for comparative studies: applications, interpretations, and limitations. Contemp Educ Psychol 2000;25:241-286 https://doi.org/10.1006/ceps.2000.1040
  26. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 2016;15:155-163 https://doi.org/10.1016/j.jcm.2016.02.012
  27. Ochs AL, Ross DE, Zannoni MD, Abildskov TJ, Bigler ED; Alzheimer's Disease Neuroimaging Initiative. Comparison of automated brain volume measures obtained with NeuroQuant and FreeSurfer. J Neuroimaging 2015;25:721-727 https://doi.org/10.1111/jon.12229
  28. Nestor SM, Gibson E, Gao FQ, Kiss A, Black SE; Alzheimer's Disease Neuroimaging Initiative. A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease. Neuroimage 2013;66:50-70 https://doi.org/10.1016/j.neuroimage.2012.10.081
  29. Madan CR, Kensinger EA. Test-retest reliability of brain morphology estimates. Brain Inform 2017;4:107-121 https://doi.org/10.1007/s40708-016-0060-4
  30. Yim Y, Lee JY, Oh SW, Chung MS, Park JE, Moon Y, et al. Comparison of automated brain volume measures by NeuroQuant vs. Freesurfer in patients with mild cognitive impairment: effect of slice thickness. Yonsei Med J 2021;62:255-261 https://doi.org/10.3349/ymj.2021.62.3.255
  31. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:341-355 https://doi.org/10.1016/S0896-6273(02)00569-X
  32. Kanda T, Nakai Y, Aoki S, Oba H, Toyoda K, Kitajima K, et al. Contribution of metals to brain MR signal intensity: review articles. Jpn J Radiol 2016;34:258-266 https://doi.org/10.1007/s11604-016-0532-8
  33. Lee H, Nakamura K, Narayanan S, Brown RA, Arnold DL; Alzheimer's Disease Neuroimaging Initiative. Estimating and accounting for the effect of MRI scanner changes on longitudinal whole-brain volume change measurements. Neuroimage 2019;184:555-565 https://doi.org/10.1016/j.neuroimage.2018.09.062
  34. Lee JY, Oh SW, Chung MS, Park JE, Moon Y, Jeon HJ, et al. Clinically available software for automatic brain volumetry: comparisons of volume measurements and validation of intermethod reliability. Korean J Radiol 2021;22:405-414 https://doi.org/10.3348/kjr.2020.0518
  35. Finkelsztejn A, Fragoso YD, Bastos EA, Duarte JA, Varela JS, Houbrechts R, et al. Intercontinental validation of brain volume measurements using MSmetrix. Neuroradiol J 2018;31:147-149 https://doi.org/10.1177/1971400917721521
  36. Vinke EJ, Huizinga W, Bergtholdt M, Adams HH, Steketee RME, Papma JM, et al. Normative brain volumetry derived from different reference populations: impact on single-subject diagnostic assessment in dementia. Neurobiol Aging 2019;84:9-16 https://doi.org/10.1016/j.neurobiolaging.2019.07.008
  37. Guenette JP, Stern RA, Tripodis Y, Chua AS, Schultz V, Sydnor VJ, et al. Automated versus manual segmentation of brain region volumes in former football players. Neuroimage Clin 2018;18:888-896 https://doi.org/10.1016/j.nicl.2018.03.026
  38. Morey RA, Petty CM, Xu Y, Hayes JP, Wagner HR 2nd, Lewis DV, et al. A comparison of automated segmentation and manual tracing for quantifying hippocampal and amygdala volumes. Neuroimage 2009;45:855-866 https://doi.org/10.1016/j.neuroimage.2008.12.033
  39. Tae WS, Kim SS, Lee KU, Nam EC, Kim KW. Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 2008;50:569-581 https://doi.org/10.1007/s00234-008-0383-9