DOI QR코드

DOI QR Code

Magnetic Resonance Imaging in Diplopia: Neural Pathway, Imaging, and Clinical Correlation

  • Jae Hyoung Kim (Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital) ;
  • Minjae Kim (Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital) ;
  • Yun Jung Bae (Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital)
  • Received : 2022.02.18
  • Accepted : 2022.03.18
  • Published : 2022.06.01

Abstract

The role of magnetic resonance imaging (MRI) in diplopia is to diagnose various diseases that occur along the neural pathway governing eye movement. However, the lesions are frequently small and subtle and are therefore difficult to detect on MRI. This article presents representative cases of diseases that cause diplopia. The purpose of this article was to 1) describe the anatomy of the neural pathway governing eye movement, 2) recommend optimal MRI targets and protocols for the diagnosis of diseases causing diplopia, 3) correlate MRI findings with misalignment of the eyes (i.e., strabismus), and 4) help familiarize the reader with the imaging diagnosis of diplopia.

Keywords

References

  1. Economides JR, Adams DL, Horton JC. Perception via the deviated eye in strabismus. J Neurosci 2012;32:10286-10295 https://doi.org/10.1523/JNEUROSCI.1435-12.2012
  2. Blumenfeld H. Neuroanatomy through clinical cases. Sunderland: Sinauer Associate, 2002:528-553
  3. Choi KD, Choi SY, Kim JS, Choi JH, Yang TH, Oh SY, et al. Acquired ocular motor nerve palsy in neurology clinics: a prospective multicenter study. J Clin Neurol 2019;15:221-227 https://doi.org/10.3988/jcn.2019.15.2.221
  4. Tamhankar MA, Biousse V, Ying GS, Prasad S, Subramanian PS, Lee MS, et al. Isolated third, fourth, and sixth cranial nerve palsies from presumed microvascular versus other causes: a prospective study. Ophthalmology 2013;120:2264-2269 https://doi.org/10.1016/j.ophtha.2013.04.009
  5. Mahalingam HV, Mani SE, Patel B, Prabhu K, Alexander M, Fatterpekar GM, et al. Imaging spectrum of cavernous sinus lesions with histopathologic correlation. Radiographics 2019;39:795-819 https://doi.org/10.1148/rg.2019180122
  6. Miller MJ, Mark LP, Ho KC, Haughton VM. Anatomic relationship of the oculomotor nuclear complex and medial longitudinal fasciculus in the midbrain. AJNR Am J Neuroradiol 1997;18:111-113
  7. Bronstein AM, Rudge P, Gresty MA, Du Boulay G, Morris J. Abnormalities of horizontal gaze. Clinical, oculographic and magnetic resonance imaging findings. II. Gaze palsy and internuclear ophthalmoplegia. J Neurol Neurosurg Psychiatry 1990;53:200-207 https://doi.org/10.1136/jnnp.53.3.200
  8. Bae YJ, Kim JH, Choi BS, Jung C, Kim E. Brainstem pathways for horizontal eye movement: pathologic correlation with MR imaging. Radiographics 2013;33:47-59 https://doi.org/10.1148/rg.331125033
  9. Yang HK, Kim JH, Hwang JM. Magnetic resonance imaging in 14 patients with congenital oculomotor nerve palsy. Clin Neuroradiol 2020;30:237-242 https://doi.org/10.1007/s00062-019-00781-5
  10. Kim JH, Hwang JM. Absence of the trochlear nerve in patients with superior oblique hypoplasia. Ophthalmology 2010;117:2208-2213 https://doi.org/10.1016/j.ophtha.2010.02.017
  11. Kim JH, Hwang JM. Presence of the abducens nerve according to the type of Duane's retraction syndrome. Ophthalmology 2005;112:109-113 https://doi.org/10.1016/j.ophtha.2004.06.040
  12. Casselman J, Mermuys K, Delanote J, Ghekiere J, Coenegrachts K. MRI of the cranial nerves--more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 2008;18:197-231 https://doi.org/10.1016/j.nic.2008.02.002
  13. Blitz AM, Choudhri AF, Chonka ZD, Ilica AT, Macedo LL, Chhabra A, et al. Anatomic considerations, nomenclature, and advanced cross-sectional imaging techniques for visualization of the cranial nerve segments by MR imaging. Neuroimaging Clin N Am 2014;24:1-15 https://doi.org/10.1016/j.nic.2013.03.020
  14. Kim HJ, Seong M, Kim Y. Normal anatomy of cranial nerves III-XII on magnetic resonance imaging. J Korean Soc Radiol 2020;81:501-529 https://doi.org/10.3348/jksr.2020.81.3.501
  15. Kim JH, Hwang JM. Congenital monocular elevation deficiency. Ophthalmology 2009;116:580-584 https://doi.org/10.1016/j.ophtha.2008.10.023
  16. Ettl A, Salomonowitz E. Visualization of the oculomotor cranial nerves by magnetic resonance imaging. Strabismus 2004:12:85-96 https://doi.org/10.1080/09273970490517511
  17. Choi BS, Kim JH, Jung C, Hwang JM. High-resolution 3D MR imaging of the trochlear nerve. AJNR Am J Neuroradiol 2010;31:1076-1079 https://doi.org/10.3174/ajnr.A1992
  18. Lee JH, Cheng KL, Choi YJ, Baek JH. High-resolution imaging of neural anatomy and pathology of the neck. Korean J Radiol 2017;18:180-193 https://doi.org/10.3348/kjr.2017.18.1.180
  19. Dhaliwal A, West AL, Trobe JD, Musch DC. Third, fourth, and sixth cranial nerve palsies following closed head injury. J Neuroophthalmol 2006;26:4-10 https://doi.org/10.1097/01.wno.0000204661.48806.1d
  20. Mark AS, Casselman J, Brown D, Sanchez J, Kolsky M, Larsen TC 3rd, et al. Ophthalmoplegic migraine: reversible enhancement and thickening of the cisternal segment of the oculomotor nerve on contrast-enhanced MR images. AJNR Am J Neuroradiol 1998;19:1887-1891
  21. Eisenhut F, Gerner ST, Goelitz P, Doerfler A, Seifert F. Highresolution magnetic resonance imaging in isolated, traumatic oculomotor nerve palsy: a case report. Radiol Case Rep 2021;16:384-388 https://doi.org/10.1016/j.radcr.2020.12.001
  22. Ravindran K, Lorensini B, Gaillard F, Kalus S. Bilateral traumatic abducens nerve avulsion: a case series and literature review. J Clin Neurosci 2017;44:30-33 https://doi.org/10.1016/j.jocn.2017.06.023
  23. Chan JW, Albretson J. Causes of isolated recurrent ipsilateral sixth nerve palsies in older adults: a case series and review of the literature. Clin Ophthalmol 2015;9:373-377 https://doi.org/10.2147/OPTH.S78319
  24. Sato M, Sonobe S, Iwabuchi N, Yoshida M, Tominaga T. Two cases of cerebral aneurysm presenting with oculomotor nerve palsy anatomically evaluated using constructive interference steady-state imaging. Surg Cereb Stroke 2021;49:287-291 https://doi.org/10.2335/scs.49.287
  25. Yasuda A, Campero A, Martins C, Rhoton AL Jr, de Oliveira E, Ribas GC. Microsurgical anatomy and approaches to the cavernous sinus. Neurosurgery 2005;56(1 Suppl):4-27 https://doi.org/10.1227/01.NEU.0000144208.42171.02
  26. Linn J, Peters F, Lummel N, Schankin C, Rachinger W, Brueckmann H, et al. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3 tesla using a contrast-enhanced MR angiography. Neuroradiology 2011;53:947-954 https://doi.org/10.1007/s00234-011-0837-3
  27. Yang Y, Lai C, Yan F, Wang J. Clinical significance of MRI contrast enhancement of the oculomotor nerve in ischemic isolated oculomotor nerve palsy. J Clin Neurol 2020;16:653-658 https://doi.org/10.3988/jcn.2020.16.4.653
  28. Jain R, Sawhney S, Koul RL, Chand P. Tolosa-Hunt syndrome: MRI appearances. J Med Imaging Radiat Oncol 2008;52:447-451 https://doi.org/10.1111/j.1440-1673.2008.01988.x
  29. Kim E, Kim JH, Choi BS, Jung C, Lee DH. MRI and MR angiography findings to differentiate jugular venous reflux from cavernous dural arteriovenous fistula. AJR Am J Roentgenol 2014;202:839-846 https://doi.org/10.2214/AJR.13.11048