DOI QR코드

DOI QR Code

Research Highlight: Use of Generative Images Created with Artificial Intelligence for Brain Tumor Imaging

  • Ji Eun Park (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Philipp Vollmuth (Department of Neuroradiology, University of Heidelberg) ;
  • Namkug Kim (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center) ;
  • Ho Sung Kim (Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center)
  • Received : 2022.01.13
  • Accepted : 2022.02.15
  • Published : 2022.05.01

Abstract

Keywords

Acknowledgement

This research was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIP) (grant number: NRF-2020R1A2B5B01001707) and supported by Ministry of Health and Welfare, South Korea (HI21C1161).

References

  1. Engstrom L, Tran B, Tsipras D, Schmidt L, Madry A. A rotation and atranslation suffice: fooling cnns with simple transformations. OpenReview [Preprint]. 2018 [cited 2022 February 10]. Available at: https://openreview.net/forum?id=BJfvknCqFQ 
  2. Dar SU, Yurt M, Karacan L, Erdem A, Erdem E, Cukur T. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans Med Imaging 2019;38:2375-2388  https://doi.org/10.1109/TMI.2019.2901750
  3. Yurt M, Dar SU, Erdem A, Erdem E, Oguz KK, Cukur T. mustGAN: multi-stream generative adversarial networks for MR image synthesis. Med Image Anal 2021;70:101944 
  4. Dar SU, Yurt M, Shahdloo M, Ildiz ME, Tinaz B, Cukur T. Prior-guided image reconstruction for accelerated multi-contrast MRI via generative adversarial networks. IEEE J Sel Top Signal Process 2020;14:1072-1087  https://doi.org/10.1109/JSTSP.2020.3001737
  5. Benzakoun J, Deslys MA, Legrand L, Hmeydia G, Turc G, Hassen WB, et al. Synthetic FLAIR as a substitute for FLAIR sequence in acute ischemic stroke. Radiology 2022;303:153-159  https://doi.org/10.1148/radiol.211394
  6. Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data 2019;6:60 
  7. Moreno-Barea FJ, Jerez JM, Franco L. Improving classification accuracy using data augmentation on small data sets. Expert Syst Appl 2020;161:113696 
  8. Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, et al. Cross-modality image synthesis from unpaired data using CycleGAN. Proceedings of SASHIMI: International Workshop on Simulation and Synthesis in Medical Imaging (Third International Workshop, SASHIMI 2018); 2018 Sep 16; Granada: Spain: Springer; 2018; p. 31-41 
  9. Wolterink JM, Dinkla AM, Savenije MHF, Seevinck PR, van den Berg CAT, Isgum I. Deep MR to CT synthesis using unpaired data. Proceedings of SASHIMI: International Workshop on Simulation and Synthesis in Medical Imaging (Second International Workshop, SASHIMI 2017); 2017 Sep 10; Quebec: Canada: Springer; 2017; p. 14-23 
  10. Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging 2017;36:2536-2545  https://doi.org/10.1109/TMI.2017.2708987
  11. Dar SUH, Yurt M, Shahdloo M, Ildiz ME, Cukur T. Synergistic reconstruction and synthesis via generative adversarial networks for accelerated multi-contrast MRI. arXiv [Preprint]. 2018 [cited 2022 February 10]. Available at: https://doi.org/10.48550/arXiv.1805.10704 
  12. Kim KH, Do WJ, Park SH. Improving resolution of MR images with an adversarial network incorporating images with different contrast. Med Phys 2018;45:3120-3131  https://doi.org/10.1002/mp.12945
  13. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, et al. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage 2018;174:550-562  https://doi.org/10.1016/j.neuroimage.2018.03.045
  14. Rezaei M, Harmuth K, Gierke W, Kellermeier T, Fischer M, Yang H, et al. A conditional adversarial network for semantic segmentation of brain tumor. Proceedings of the International MICCAI Brainlesion Workshop; 2017 Sep 14; Quebec, Canada: Springer; 2017; p. 241-252 
  15. Runge VM. Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus. Invest Radiol 2016;51:273-279  https://doi.org/10.1097/RLI.0000000000000273
  16. Kleesiek J, Morshuis JN, Isensee F, Deike-Hofmann K, Paech D, Kickingereder P, et al. Can virtual contrast enhancement in brain MRI replace gadolinium?: a feasibility study. Invest Radiol 2019;54:653-660  https://doi.org/10.1097/RLI.0000000000000583
  17. Jayachandran Preetha C, Meredig H, Brugnara G, Mahmutoglu MA, Foltyn M, Isensee F, et al. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. Lancet Digit Health 2021;3:e784-e794  https://doi.org/10.1016/S2589-7500(21)00205-3
  18. Conte GM, Weston AD, Vogelsang DC, Philbrick KA, Cai JC, Barbera M, et al. Generative adversarial networks to synthesize missing T1 and FLAIR MRI sequences for use in a multisequence brain tumor segmentation model. Radiology 2021;299:313-323  https://doi.org/10.1148/radiol.2021203786
  19. Borji A. Pros and cons of gan evaluation measures. Computer Vision and Image Understanding 2019;179:41-65  https://doi.org/10.1016/j.cviu.2018.10.009
  20. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image Anal 2019;58:101552 
  21. Park JE, Eun D, Kim HS, Lee DH, Jang RW, Kim N. Generative adversarial network for glioblastoma ensures morphologic variations and improves diagnostic model for isocitrate dehydrogenase mutant type. Sci Rep 2021;11:9912 
  22. Gong E, Pauly JM, Wintermark M, Zaharchuk G. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI. J Magn Reson Imaging 2018;48:330-340 https://doi.org/10.1002/jmri.25970