DOI QR코드

DOI QR Code

Research Highlight: Artificial Intelligence for Ruling Out Negative Examinations in Screening Breast MRI

  • Ji Hyun Youk (Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine) ;
  • Eun-Kyung Kim (Department of Radiology, Yongin Severance Hospital, Yonsei University College of Medicine)
  • 투고 : 2021.12.02
  • 심사 : 2021.12.17
  • 발행 : 2022.02.01

초록

키워드

참고문헌

  1. Bahl M. Artificial intelligence: a primer for breast imaging radiologists. J Breast Imaging 2020;2:304-314  https://doi.org/10.1093/jbi/wbaa033
  2. Youk JH, Gweon HM, Son EJ, Eun NL, Kim JA. Fully automated measurements of volumetric breast density adapted for BIRADS 5th edition: a comparison with visual assessment. Acta Radiol 2021;62:1148-1154  https://doi.org/10.1177/0284185120956309
  3. Heacock L, Lewin AA, Toth HK, Moy L, Reig B. Abbreviated MR imaging for breast cancer. Radiol Clin North Am 2021;59:99-111  https://doi.org/10.1016/j.rcl.2020.09.001
  4. Kuhl CK, Strobel K, Bieling H, Leutner C, Schild HH, Schrading S. Supplemental breast MR imaging screening of women with average risk of breast cancer. Radiology 2017;283:361-370  https://doi.org/10.1148/radiol.2016161444
  5. Gao Y, Reig B, Heacock L, Bennett DL, Heller SL, Moy L. Magnetic resonance imaging in screening of breast cancer. Radiol Clin North Am 2021;59:85-98  https://doi.org/10.1016/j.rcl.2020.09.004
  6. Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, et al. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med 2019;381:2091-2102  https://doi.org/10.1056/NEJMoa1903986
  7. American College of Radiology. ACR BI-RADS®-mammography ACR breast imaging reporting and data system, 4th ed. Reston: American College of Radiology, 2003 
  8. Chan HP, Samala RK, Hadjiiski LM. CAD and AI for breast cancer-recent development and challenges. Br J Radiol 2020;93:20190580 
  9. Ou WC, Polat D, Dogan BE. Deep learning in breast radiology: current progress and future directions. Eur Radiol 2021;31:4872-4885  https://doi.org/10.1007/s00330-020-07640-9
  10. Kooi T. Cognitive biases and augmented intelligence in radiology. Lunit.io Web site. https://www.lunit.io/en/evidence/lunit-blog/cognitive-biases-and-augmented-intelligence-in-radiology. Accessed November 6, 2021 
  11. Yoon JH, Kim EK. Deep learning-based artificial intelligence for mammography. Korean J Radiol 2021;22:1225-1239  https://doi.org/10.3348/kjr.2020.1210
  12. Verburg E, van Gils CH, van der Velden BHM, Bakker MF, Pijnappel RM, Veldhuis WB, et al. Deep learning for automated triaging of 4581 breast MRI examinations from the DENSE trial. Radiology 2022;302:29-36  https://doi.org/10.1148/radiol.2021203960
  13. Yala A, Schuster T, Miles R, Barzilay R, Lehman C. A deep learning model to triage screening mammograms: a simulation study. Radiology 2019;293:38-46  https://doi.org/10.1148/radiol.2019182908
  14. Rodriguez-Ruiz A, Lang K, Gubern-Merida A, Teuwen J, Broeders M, Gennaro G, et al. Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. Eur Radiol 2019;29:4825-4832  https://doi.org/10.1007/s00330-019-06186-9
  15. Kyono T, Gilbert FJ, van der Schaar M. Improving workflow efficiency for mammography using machine learning. J Am Coll Radiol 2020;17:56-63  https://doi.org/10.1016/j.jacr.2019.05.012
  16. Lang K, Dustler M, Dahlblom V, Akesson A, Andersson I, Zackrisson S. Identifying normal mammograms in a large screening population using artificial intelligence. Eur Radiol 2021;31:1687-1692  https://doi.org/10.1007/s00330-020-07165-1
  17. Dembrower K, Wahlin E, Liu Y, Salim M, Smith K, Lindholm P, et al. Effect of artificial intelligence-based triaging of breast cancer screening mammograms on cancer detection and radiologist workload: a retrospective simulation study. Lancet Digit Health 2020;2:e468-e474  https://doi.org/10.1016/S2589-7500(20)30185-0
  18. Ko ES, Morris EA. Abbreviated magnetic resonance imaging for breast cancer screening: concept, early results, and considerations. Korean J Radiol 2019;20:533-541  https://doi.org/10.3348/kjr.2018.0722
  19. Morgan MB, Mates JL. Applications of artificial intelligence in breast imaging. Radiol Clin North Am 2021;59:139-148 https://doi.org/10.1016/j.rcl.2020.08.007