DOI QR코드

DOI QR Code

Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm

  • Yunsun Song (Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jong-Keuk Lee (Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul) ;
  • Jin-Ok Lee (Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Boseong Kwon (Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eul-Ju Seo (Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Dae Chul Suh (Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2021.06.11
  • Accepted : 2021.08.03
  • Published : 2022.01.01

Abstract

Objective: Familial intracranial aneurysms (FIAs) are found in approximately 6%-20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods: Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results: Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion: Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1A2B6003143).

References

  1. Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol 2011;10:626-636 https://doi.org/10.1016/S1474-4422(11)70109-0
  2. Ronkainen A, Hernesniemi J, Puranen M, Niemitukia L, Vanninen R, Ryynanen M, et al. Familial intracranial aneurysms. Lancet 1997;349:380-384 https://doi.org/10.1016/S0140-6736(97)80009-8
  3. Broderick JP, Brown RD Jr, Sauerbeck L, Hornung R, Huston J 3rd, Woo D, et al. Greater rupture risk for familial as compared to sporadic unruptured intracranial aneurysms. Stroke 2009;40:1952-1957 https://doi.org/10.1161/STROKEAHA.108.542571
  4. Brown RD Jr, Broderick JP. Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol 2014;13:393-404 https://doi.org/10.1016/S1474-4422(14)70015-8
  5. Rinkel GJ, Djibuti M, Algra A, van Gijn J. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke 1998;29:251-256 https://doi.org/10.1161/01.STR.29.1.251
  6. Hitchcock E, Gibson WT. A review of the genetics of intracranial berry aneurysms and implications for genetic counseling. J Genet Couns 2017;26:21-31 https://doi.org/10.1007/s10897-016-0029-8
  7. Zhou S, Dion PA, Rouleau GA. Genetics of intracranial aneurysms. Stroke 2018;49:780-787 https://doi.org/10.1161/STROKEAHA.117.018152
  8. Sauvigny T, Alawi M, Krause L, Renner S, Spohn M, Busch A, et al. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage. J Neurol 2020;267:2533-2545 https://doi.org/10.1007/s00415-020-09865-6
  9. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc 2016;11:1-9 https://doi.org/10.1038/nprot.2015.123
  10. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248-249 https://doi.org/10.1038/nmeth0410-248
  11. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010;6:e1001025
  12. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014;46:310-315 https://doi.org/10.1038/ng.2892
  13. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet 2016;99:877-885 https://doi.org/10.1016/j.ajhg.2016.08.016
  14. Jagadeesh KA, Wenger AM, Berger MJ, Guturu H, Stenson PD, Cooper DN, et al. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat Genet 2016;48:1581-1586 https://doi.org/10.1038/ng.3703
  15. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016;536:285-291 https://doi.org/10.1038/nature19057
  16. Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 2010;6:e1001154
  17. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-423 https://doi.org/10.1038/gim.2015.30
  18. Rehm HL, Bale SJ, Bayrak-Toydemir P, Berg JS, Brown KK, Deignan JL, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med 2013;15:733-747 https://doi.org/10.1038/gim.2013.92
  19. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med 2020;22:245-257 https://doi.org/10.1038/s41436-019-0686-8
  20. Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chretien S, et al. Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. Am J Hum Genet 2018;102:133-141 https://doi.org/10.1016/j.ajhg.2017.12.006
  21. Ding X, Zhao S, Zhang Q, Yan Z, Wang Y, Wu Y, et al. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J Neurointerv Surg 2020;12:221-226 https://doi.org/10.1136/neurintsurg-2019-014900
  22. Powell AE, Fernandez BA, Maroun F, Noble B, Woods MO. Familial intracranial aneurysm in newfoundland: clinical and genetic analysis. Can J Neurol Sci 2019;46:518-526 https://doi.org/10.1017/cjn.2019.230
  23. Santiago-Sim T, Fang X, Hennessy ML, Nalbach SV, DePalma SR, Lee MS, et al. THSD1 (thrombospondin type 1 domain containing protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke 2016;47:3005-3013 https://doi.org/10.1161/STROKEAHA.116.014161
  24. Wu Y, Li Z, Shi Y, Chen L, Tan H, Wang Z, et al. Exome sequencing identifies LOXL2 mutation as a cause of familial intracranial aneurysm. World Neurosurg 2018;109:e812-e818 https://doi.org/10.1016/j.wneu.2017.10.094
  25. Yan J, Hitomi T, Takenaka K, Kato M, Kobayashi H, Okuda H, et al. Genetic study of intracranial aneurysms. Stroke 2015;46:620-626 https://doi.org/10.1161/STROKEAHA.114.007286
  26. Yang X, Li J, Fang Y, Zhang Z, Jin D, Chen X, et al. Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circ Genom Precis Med 2018;11:e002099
  27. Zhou S, Ambalavanan A, Rochefort D, Xie P, Bourassa CV, Hince P, et al. RNF213 is associated with intracranial aneurysms in the French-Canadian population. Am J Hum Genet 2016;99:1072-1085 https://doi.org/10.1016/j.ajhg.2016.09.001
  28. Hong EP, Kim BJ, Cho SS, Yang JS, Choi HJ, Kang SH, et al. Genomic variations in susceptibility to intracranial aneurysm in the Korean population. J Clin Med 2019;8:275
  29. Luukkonen TM, Poyhonen M, Palotie A, Ellonen P, Lagstrom S, Lee JH, et al. A balanced translocation truncates Neurotrimin in a family with intracranial and thoracic aortic aneurysm. J Med Genet 2012;49:621-629 https://doi.org/10.1136/jmedgenet-2012-100977
  30. Naunheim MR, Walcott BP, Nahed BV, MacRae CA, Levinson JR, Ogilvy CS. Arterial tortuosity syndrome with multiple intracranial aneurysms: a case report. Arch Neurol 2011;68:369-371 https://doi.org/10.1001/archneurol.2011.29
  31. D'hondt S, Van Damme T, Malfait F. Vascular phenotypes in nonvascular subtypes of the Ehlers-Danlos syndrome: a systematic review. Genet Med 2018;20:562-573 https://doi.org/10.1038/gim.2017.138
  32. Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med 2001;33:7-21 https://doi.org/10.3109/07853890109002055
  33. Ruotsalainen H, Sipila L, Vapola M, Sormunen R, Salo AM, Uitto L, et al. Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. J Cell Sci 2006;119:625-635 https://doi.org/10.1242/jcs.02780
  34. Ewans LJ, Colley A, Gaston-Massuet C, Gualtieri A, Cowley MJ, McCabe MJ, et al. Pathogenic variants in PLOD3 result in a Stickler syndrome-like connective tissue disorder with vascular complications. J Med Genet 2019;56:629-638 https://doi.org/10.1136/jmedgenet-2019-106019
  35. Salo AM, Cox H, Farndon P, Moss C, Grindulis H, Risteli M, et al. A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am J Hum Genet 2008;83:495-503 https://doi.org/10.1016/j.ajhg.2008.09.004
  36. Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghdadi T, et al. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019;81:91-106 https://doi.org/10.1016/j.matbio.2018.11.006
  37. Sellar GC, Watt KP, Rabiasz GJ, Stronach EA, Li L, Miller EP, et al. OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer. Nat Genet 2003;34:337-343 https://doi.org/10.1038/ng1183
  38. Worrall BB, Foroud T, Brown RD Jr, Connolly ES, Hornung RW, Huston J 3rd, et al. Genome screen to detect linkage to common susceptibility genes for intracranial and aortic aneurysms. Stroke 2009;40:71-76 https://doi.org/10.1161/STROKEAHA.108.522631
  39. Ozturk AK, Nahed BV, Bydon M, Bilguvar K, Goksu E, Bademci G, et al. Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke 2006;37:1021-1027 https://doi.org/10.1161/01.STR.0000206153.92675.b9
  40. Hirose T, Mizumoto S, Hashimoto A, Takahashi Y, Yoshizawa T, Nitahara-Kasahara Y, et al. Systematic investigation of the skin in Chst14-/- mice: a model for skin fragility in musculocontractural Ehlers-Danlos syndrome caused by CHST14 variants (mcEDS-CHST14). Glycobiology 2020;31:137-150 https://doi.org/10.1093/glycob/cwaa058
  41. Kosho T, Mizumoto S, Watanabe T, Yoshizawa T, Miyake N, Yamada S. Recent advances in the pathophysiology of musculocontractural Ehlers-Danlos syndrome. Genes (Basel) 2019;11:43
  42. Balestrino R, Tunesi S, Tesei S, Lopiano L, Zecchinelli AL, Goldwurm S. Penetrance of glucocerebrosidase (GBA) mutations in Parkinson's disease: a kin cohort study. Mov Disord 2020;35:2111-2114 https://doi.org/10.1002/mds.28200
  43. Pastores GM, Hughes DA. Gaucher disease. Ncbi.nlm.nih.gov Web site. https://www.ncbi.nlm.nih.gov/books/NBK1269/. Accessed June 11th, 2021
  44. Coucke PJ, Willaert A, Wessels MW, Callewaert B, Zoppi N, De Backer J, et al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat Genet 2006;38:452-457 https://doi.org/10.1038/ng1764
  45. Callewaert BL, Willaert A, Kerstjens-Frederikse WS, De Backer J, Devriendt K, Albrecht B, et al. Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 2008;29:150-158 https://doi.org/10.1002/humu.20623
  46. Kim CJ, Park SS, Lee HS, Chung HJ, Choi W, Chung JH, et al. Identification of an autosomal dominant locus for intracranial aneurysm through a model-based family collection in a geographically limited area. J Hum Genet 2011;56:464-466 https://doi.org/10.1038/jhg.2011.27
  47. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196-200 https://doi.org/10.1161/01.CIR.103.2.196
  48. Malek N, Weil RS, Bresner C, Lawton MA, Grosset KA, Tan M, et al. Features of GBA-associated Parkinson's disease at presentation in the UK Tracking Parkinson's study. J Neurol Neurosurg Psychiatry 2018;89:702-709 https://doi.org/10.1136/jnnp-2017-317348