참고문헌
- International Atomic Energy Agency, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, IAEA, General Safety Requirements Part 3, Vienna, Austria, 2014.
- International Atomic Energy Agency, Programs and Systems for Source and Environmental Radiation Monitoring, IAEA, Vienna, Austria, 2010. Safety Reports Series No. 64.
- SP AS-03 Sanitary Rules for Design and Operation Nuclear Power Plants, SanPin 2.6.1.24-03, Moscow, Russia, 2003 [in Russian].
- International Atomic Energy Agency, En Vironmental and Source Monitoring for Purposes of Radiation Protection, 2016. IAEA, Safety Standards Series no. RS-G-1.8, Vienna, Austria.
- International Atomic Energy Agency, International Radiation Monitoring Information System: User Manual IRMIS Version 3.0.0, IAEA, EPR-IEComm Attachment 2, Vienna, Austria, 2020.
- IBRAE RAN Proceedings, Issue 15: Development of Emergency Response and Radiation Monitoring Systems, Nauka, Moscow, Russia, 2013 [in Russian].
- Nuclear Safety Institute of the Russian Academy of Sciences, Radiation Situation at Rosatom Enterprises, Moscow, Russia [cited March 2021], Available from, https://www.russianatom.ru/.
- United States Environmental Protection Agency, Nationalwide Environmental Radiation Monitoring, RadNet System, Washington, US [cited March 2021], Available from, https://www.epa.gov/radnet.
- European Radiological Data Exchange Platform, Joint Research Centre of the European Commission [cited February 2021], Available from, https://remon.jrc.ec.europa.eu/About/Rad-Data-Exchange.
- International Atomic Energy Agency, Operational Intervention Levels for Reactor Emergencies and Methodology for Derivation, IAEA, EPR-NPP-OILs, Vienna, Austria, 2017. ISSN 2518-685X, no. 479.
- Federal Medical-Biological Agency of Russia, Derived Intervention Levels in the Case of an Accident at a Nuclear Power Plant, FMBA Guidelines, MU 2.6.1.047-08, Moscow, Russia, 2008 [in Russian].
- S.A. Korolev, Yu.E. Lavrukhin, O.V. Rumyantsev, Application of remote gamma spectrometry in automated systems for monitoring emissions from nuclear power plants, At. En. 106 (2009) 43-49, https://doi.org/10.1007/s10512-009-9129-y.
- S. Levinson, U. German, O. Pelled, Y. Laichter, Prediction of a NaI(Tl) pulse height spectra near a radioactive plume, following a nuclear accident, 20th Regional Congress Isr. Radiat. Prot. Assoc. 16-20 (1997) 236-239. Tel Aviv, Israel, Nov.
- Y. Terasakaa, H. Yamazawaa, J. Hirouchia, S. Hiraoa, H. Sugiuraa, J. Moriizumia, Yu. Kuwahara, Air concentration estimation of radionuclides discharged from Fukushima Daiichi Nuclear Power Station using NaI(Tl) detector pulse height distribution measured in Ibaraki Prefecture, J. Nucl. Sci. Tech. 53 (2016) 1919-1932, https://doi.org/10.1080/00223131.2016.1193453.
- D.S. Grozdov, V.P. Kolotov, Yu.E. Lavrukhin, Computation of full energy peak efficiency for nuclear power plant radioactive plume using remote scintillation gamma-ray spectrometry, Appl. Radiat. Isot. 110 (2016) 118-123, https://doi.org/10.1016/j.apradiso.2016.01.014.
- Yu.E. Lavrukhin, A.V. Sokolov, D.S. Grozdov. Monitoring of radon volumetric activity in the surface atmospheric layer using the readings of the SEG-017 γ-spectrometer: error analysis, in: Proceedings of the Conference Radioactivity after Nuclear Explosions and Accidents: Consequences and Ways of Overcoming, Obninsk, Russia, April 19-21, 2016, pp. 359-368 ([in Russian]).
- M.W. McNaughton, J.M. Gillis, E. Ruedig, J.J. Whicker, D.P. Fuehne, Gamma-ray dose from an overhead plume, Health Phys. 112 (2017) 445-450, https://doi.org/10.1097/hp.0000000000000643.
- W. Skamarock, J. Klemp, J. Dudhia, et al., Description of the Advanced Research WRF Version 3, NCAR, 2008. Technical Note NCAR/TN-475+STR.
- R.V. Arutyunyan, V.V. Belikov, G.V. Belikova, et al., Nostradamus computer system for supporting decisions during accidental emissions at radiation hazardous objects, Izv. Ross. Akad. Nauk, Energetika 4 (1995) 19-30.
- R.I. Bakin, I.M. Gubenko, K.S. Dolganov, R. Y Ignatov, E.A. Ilichev, A.A. Kiselev, S.N. Krasnoperov, P.A. Konyaev, K.G. Rubinshtein, D.Y. Tomashchik, Application of ensemble method to predict radiation doses from a radioactive release during hypothetical severe accidents at Russian NPP, J. Nucl. Sci. Tech. 58 (2020) 635-650, https://doi.org/10.1080/00223131.2020.1854879.
- Environmental Modeling Center, The GFS Atmospheric Model, Global Climate and Weather Modeling Branch, EMC, Camp Springs, Maryland, US, 2003. NCEP Office Note 442..
- L.A. Bolshov, K.S. Dolganov, A.E. Kiselev, V.F. Strizhov, Results of SOCRAT code development, validation and applications for NPP safety assessment under severe accidents, Nucl. Eng. Des. 341 (2019) 326-345, https://doi.org/10.1016/j.nucengdes.2018.11.013.
- I.M. Sobol, Monte Carlo Numerical Methods, Nauka, Moscow, 1973 [in Russian].
- M.P. Panin, Simulation of Radiation Transport, MEPhI, Moscow, 2008 [in Russian].
- W.L. Dunn, J.K. Shultis, Exploring Monte Carlo Methods, Elsevier, 2011.
- I. Murata, R. Shindo, S. Shiozawa, Importance determination method for geometry splitting with Russian roulette in Monte Carlo calculations of thick and complicated core shielding structure, J. Nucl. Sci. Tech. 32 (1995) 971-980, https://doi.org/10.1080/18811248.1995.9731805.
- International Commission on Radiological Protection, Radionuclide transformations - energy and intensity of emissions, ICRP publication 38, Ann. ICRP (1983) 11-13.
- G.R. Gilmore, Practical Gamma-Ray Spectrometry, second ed., Wiley, Chichister, UK, 2008.