DOI QR코드

DOI QR Code

New thyroid models for ICRP pediatric mesh-type reference computational phantoms

  • Yeon Soo Yeom (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Chansoo Choi (Department of Nuclear Engineering, Hanyang University) ;
  • Bangho Shin (Department of Nuclear Engineering, Hanyang University) ;
  • Suhyeon Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Haegin Han (Department of Nuclear Engineering, Hanyang University) ;
  • Sungho Moon (Department of Nuclear Engineering, Hanyang University) ;
  • Gahee Son (Department of Nuclear Engineering, Hanyang University) ;
  • Hyeonil Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Thang Tat Nguyen (School of Nuclear Engineering and Environmental Physics, Hanoi University of Science and Technology) ;
  • Beom Sun Chung (Department of Anatomy, Yonsei University Wonju College of Medicine) ;
  • Se Hyung Lee (Department of Nuclear Engineering, Hanyang University) ;
  • Chan Hyeong Kim (Department of Nuclear Engineering, Hanyang University)
  • 투고 : 2022.02.16
  • 심사 : 2022.08.10
  • 발행 : 2022.12.25

초록

As part of the ICRP Task Group 103 project, we developed ten thyroid models for the pediatric mesh-type reference computational phantoms (MRCPs). The thyroid is not only a radiosensitive target organ needed for effective dose calculation but an important source region particularly for radioactive iodines. The thyroid models for the pediatric MRCPs were constructed by converting those of the pediatric voxel-type reference computational phantoms (VRCPs) in ICRP Publication 143 to a high-quality mesh format, faithfully maintaining their original topology. At the same time, we improved several anatomical parameters of the thyroid models for the pediatric MRCPs, including the mass, overlying tissue thickness, location, and isthmus dimensions. Absorbed doses to the thyroid for the pediatric MRCPs for photon external exposures were calculated and compared with those of the pediatric VRCPs, finding that the differences between the MRCPs and VRCPs were not significant except for very low energies (<0.03 MeV). Specific absorbed fractions (target ⟵ thyroid) for photon internal exposures were also compared, where significant differences were frequently observed especially for the target organs/tissues close to the thyroid (e.g., a factor of ~1.2-~327 for the thymus as a target) due mainly to anatomical improvement of the MRCP thyroid models.

키워드

과제정보

This research was supported by Field-oriented Technology Development Project for Customs Administration through National Research Foundation of Korea (NRF) funded by the Ministry of Science & ICT and Korea Customs Service (NRF-2021M3I1A1097895). This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2019M2D2A1A02059814).

참고문헌

  1. ICRP, Paediatric reference computational phantoms, ICRP Publication 143, Ann. ICRP 49 (2020) 5-297, https://doi.org/10.1177/0146645320915031. 
  2. ICRP, Adult reference computational phantoms, ICRP Publication 110, Ann. ICRP 39 (2009) 1-165. 
  3. ICRP, The 2007 recommendations of the international commission on radiological protection, ICRP Publication 103, Ann. ICRP 37 (2007) 1-332. 
  4. ICRP, Recommendations of the international commission on radiological protection, ICRP publication 26, Ann. ICRP 1 (1977) 1-53.  https://doi.org/10.1016/0146-6453(77)90041-0
  5. ICRP, Recommendations of the international commission on radiological protection, ICRP publication 60, Ann. ICRP 21 (1991) (1990) 1-201. 
  6. ICRP, Human respiratory tract model for radiological protection, ICRP publication 66, Ann. ICRP 24 (1994) 1-482.  https://doi.org/10.1016/0146-6453(94)90029-9
  7. ICRP, Human alimentary tract model for radiological protection, ICRP publication 100, Ann. ICRP 36 (2006) 1-336.  https://doi.org/10.1016/j.icrp.2006.06.003
  8. ICRP, The ICRP computational framework for internal dose assessment for reference adults: specific absorbed fractions, ICRP publication 133, Ann. ICRP 45 (2016) 5-73, https://doi.org/10.1177/0146645316661077. 
  9. C.H. Kim, Y.S. Yeom, T.T. Nguyen, M.C. Han, C. Choi, H. Lee, H. Han, B. Shin, J.-K. Lee, H.S. Kim, M. Zankl, N. Petoussi-Henss, W.E. Bolch, C. Lee, B.S. Chung, R. Qiu, K. Eckerman, New mesh-type phantoms and their dosimetric applications, including emergencies, Ann. ICRP 47 (2018) 45-62, https://doi.org/10.1177/0146645318756231. 
  10. ICRP, Adult mesh-type reference computational phantoms, ICRP publication 145, Ann. ICRP 49 (2020) 13-201, https://doi.org/10.1177/0146645319893605. 
  11. C. Choi, B. Shin, Y.S. Yeom, T.T. Nguyen, H. Han, S. Ha, B.S. Chung, W.E. Bolch, C.H. Kim, Development of paediatric mesh-type reference computational phantom series of international commission on radiological protection, J. Radiol. Prot. 41 (2021) S160-S170, https://doi.org/10.1088/1361-6498/ac0801. 
  12. L.B. Zablotska, E. Ron, A.V. Rozhko, M. Hatch, O.N. Polyanskaya, A.V. Brenner, J. Lubin, G.N. Romanov, R.J. McConnell, P. O'Kane, V.V. Evseenko, V.V. Drozdovitch, N. Luckyanov, V.F. Minenko, A. Bouville, V.B. Masyakin, Thyroid cancer risk in Belarus among children and adolescents exposed to radioiodine after the chornobyl accident, Br. J. Cancer 104 (2011) 181-187, https://doi.org/10.1038/sj.bjc.6605967. 
  13. A.V. Brenner, M.D. Tronko, M. Hatch, T.I. Bogdanova, V.A. Oliynik, J.H. Lubin, L.B. Zablotska, V.P. Tereschenko, R.J. Mcconnell, G.A. Zamotaeva, P. O'Kane, A.C. Bouville, L.V. Chaykovskaya, E. Greenebaum, I.P. Paster, V.M. Shpak, E. Ron, I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident, Environ. Health Perspect. 119 (2011) 933-939, https://doi.org/10.1289/ehp.1002674. 
  14. M.D. Tronko, G.R. Howe, T.I. Bogdanova, A.C. Bouville, O.V. Epstein, A.B. Brill, I.A. Likhtarev, D.J. Fink, V.V. Markov, E. Greenebaum, V.A. Olijnyk, I.J. Masnyk, V.M. Shpak, R.J. McConnell, V.P. Tereshchenko, J. Robbins, O.V. Zvinchuk, L.B. Zablotska, M. Hatch, N.K. Luckyanov, E. Ron, T.L. Thomas, P.G. Voilleque, G.W. Beebe, A cohort study of thyroid cancer and other thyroid diseases after the chornobyl accident: thyroid cancer in Ukraine detected during first screening, J. Natl. Cancer Inst. 98 (2006) 897-903, https://doi.org/10.1093/jnci/djj244. 
  15. C. Lee, D. Lodwick, J. Hurtado, D. Pafundi, J.L. Williams, W.E. Bolch, The UF family of reference hybrid phantoms for computational radiation dosimetry, Phys. Med. Biol. 55 (2010) 339-363, https://doi.org/10.1088/0031-9155/55/2/002. 
  16. ICRP, Basic anatomical and physiological data for use in radiological protection reference values, ICRP publication 89, Ann. ICRP 32 (2002) 1-277. 
  17. H. Ellis, Anatomy of the thyroid and parathyroid glands, Surgery (Oxford) 25 (2007) 467-468, https://doi.org/10.1016/j.mpsur.2007.09.011. 
  18. B.F. Naqshi, S. Seth, A.B. Shah, S. Gupta, S. Raina, Thyroid hemiagenesis with agenesis of isthmus a case report, J. Med. Sci. Clin. Res. 4 (2016) 10799-10801, https://doi.org/10.18535/jmscr/v4i6.19. 
  19. I.A. Likhtarev, G.M. Gulko, B.G. Sobolev, I.A. Kairo, G. Prohl, P. Roth, € K. Henrichs, G.M. Grulko, Evaluation of the 131I thyroid-monitoring measurements performed in Ukraine during May and June of 1986, Health Phys. 69 (1995) 6-15, https://doi.org/10.1097/00004032-199507000-00002. 
  20. C.H. Kim, J.H. Jeong, W.E. Bolch, K.W. Cho, S.B. Hwang, A polygon-surface reference Korean male phantom (PSRK-Man) and its direct implementation in Geant4 Monte Carlo simulation, Phys. Med. Biol. 56 (2011) 3137-3161, https://doi.org/10.1088/0031-9155/56/10/016. 
  21. Y.S. Yeom, M.C. Han, C.H. Kim, J.H. Jeong, Conversion of ICRP male reference phantom to polygon-surface phantom, Phys. Med. Biol. 58 (2013) 6985-7007, https://doi.org/10.1088/0031-9155/58/19/6985. 
  22. J.H. Sea, H. Ji, S.K. You, J.E. Lee, S.M. Lee, H.H. Cho, Age-dependent reference values of the thyroid gland in pediatric population; from routine computed tomography data, Clin. Imaging 56 (2019) 88-92, https://doi.org/10.1016/j.clinimag.2019.04.001. 
  23. G. Ozguner, O. Sulak, Size and location of thyroid gland in the fetal period, Surg. Radiol. Anat. 36 (2014) 359-367, https://doi.org/10.1007/s00276-013-1177-2. 
  24. E.C.K. Tong, S. Rubenfeld, Scan measurements of normal and enlarged thyroid glands, Am. J. Roentgenol. Radium Ther. Nucl. Med. 115 (1972) 706-708, https://doi.org/10.2214/ajr.115.4.706. 
  25. A. Harjeet, D. Sahni, I. Jit, A.K. Aggarwal, Shape, measurements and weight of the thyroid gland in northwest Indians, Surg. Radio. Anat. 26 (2004) 91-95, https://doi.org/10.1007/s00276-003-0194-y. 
  26. S.D. Joshi, S.S. Joshi, S.R. Daimi, S.A. Athavale, The thyroid gland and its variations: a cadaveric study, Folia Morphol. 69 (2010) 47-50. 
  27. Z. Ozgur, S. Celik, F. Govsa, T. Ozgur, Anatomical and surgical aspects of the lobes of the thyroid glands, Eur. Arch. Otorhinolaryngol. 268 (2011) 1357-1363, https://doi.org/10.1007/s00405-011-1502-5. 
  28. H.S. Won, S.H. Han, C.S. Oh, I.H. Chung, H.J. Won, J.H. Kim, The location and morphometry of the thyroid isthmus in adult Korean cadavers, Anat. Sci. Int. 88 (2013) 212-216, https://doi.org/10.1007/s12565-013-0187-9. 
  29. S.Z. Sultana, M. Khalil, M.K. Khan, M.M. Rahman, S. Mannan, F. Wahed, S. Choudhury, Morphometry of isthmus of thyroid gland in bangladeshi cadaver, Mymensingh Med. J. 20 (2011) 366-370. 
  30. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagulya, S. Banerjee, G. Barrand, B.R. Beck, A.G. Bogdanov, D. Brandt, J.M.C. Brown, H. Burkhardt, Ph Canal, D. Cano-Ott, S. Chauvie, K. Cho, G.A.P. Cirrone, G. Gooperman, M.A. Cortes-Giraldo, G. Cosmo, G. Cuttone, G. Depaola, L. Desorgher, X. Dong, A. Dotti, V.D. Elvira, G. Folger, Z. Francis, A. Galoyan, L. Garnier, M. Gayer, K.L. Genser, V.M. Grichine, S. Guatelli, P. Gueye, P. Gumplinger, A.S. Howard, I. Hrivnacova, S. Hwang, S. Incerti, A. Ivanchenko, V.N. Ivanchenko, F.W. Jones, S.Y. Jun, P. Kaitaniemi, N. Karakatsanis, M. Karamitros, M. Kelsey, A. Kimura, T. Koi, H. Kurashige, A. Lechner, S.B. Lee, F. Longo, M. Maire, D. Mancusi, A. Mantero, E. Mendoza, B. Morgan, K. Murakami, T. Nikitina, L. Pandola, P. Paprocki, J. Perl, I. Petrovic, M.G. Pia, W. Pokorski, J.M. Quesada, M. Raine, M.A. Reis, A. Ribon, A. Ristic Fira, F. Romano, G. Russo, G. Santin, T. Sasaki, D. Sawkey, J.I. Shin, I.I. Strakovsky, A. Taborda, S. Tanaka, B. Tome, T. Toshito, H.N. Tran, P.R. Truscott, L. Urban, V. Uzhinsky, J.M. Verbeke, M. Verderi, B.L. Wendt, H. Wenzel, D.H. Wright, D.M. Wright, T. Yamashita, J. Yarba, H. Yoshida, Recent developments in Geant4, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835 (2016) 186-225, https://doi.org/10.1016/j.nima.2016.06.125. 
  31. Y.S. Yeom, J.H. Jeong, M.C. Han, C.H. Kim, Tetrahedral-mesh-based computational human phantom for fast Monte Carlo dose calculations, Phys. Med. Biol. 59 (2014) 3173-3185, https://doi.org/10.1088/0031-9155/59/12/3173. 
  32. J. Schumann, H. Paganetti, J. Shin, B. Faddegon, J. Perl, Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4, Phys. Med. Biol. 57 (2012) 3281-3293, https://doi.org/10.1088/0031-9155/57/11/3281. 
  33. ICRP, Dose coefficients for external exposures to environmental sources, ICRP publication 144, Ann. ICRP 49 (2020) 11-145, https://doi.org/10.1177/0146645320906277. 
  34. M. Zankl, N. Petoussi-Henss, U. Fill, D. Regulla, The application of voxel phantoms to the internal dosimetry of radionuclides, Radiat. Prot. Dosim. 105 (2003) 1-4, https://doi.org/10.1093/oxfordjournals.rpd.a006299. 
  35. Y.S. Yeom, K. Griffin, B. Shin, C. Choi, H. Han, S. Moon, Body-size-dependent iodine-131 S values, J. Radiol. Prot. 40 (2020) 1311-1320, https://doi.org/10.1088/1361-6498/abc053.