DOI QR코드

DOI QR Code

236U accelerator mass spectrometry with a time-of-flight and energy detection system

  • Li Zheng (Department of Nuclear Engineering and Management, The University of Tokyo) ;
  • Hiroyuki Matsuzaki (Department of Nuclear Engineering and Management, The University of Tokyo) ;
  • Takeyasu Yamagata (Department of Nuclear Engineering and Management, The University of Tokyo)
  • Received : 2022.04.27
  • Accepted : 2022.07.21
  • Published : 2022.12.25

Abstract

A time-of-flight and energy (TOF-E) detection system for the measurement of 236U accelerator mass spectrometry (AMS) has been developed to improve the 236U/238U sensitivity at Micro Analysis Laboratory, Tandem accelerator (MALT), The University of Tokyo. With observing TOF distribution of 235U, 236U and 238U, this TOF-E detection system has clearly separated 236U from the interference of 235U and 238U when measuring three kinds of uranium standards. In addition, we have developed a novel method combining kernel-based density estimation method and multi-Gaussian fitting method to estimate the 236U/238U sensitivity of the TOF-E detection system. Using this new estimation method, 3.4 × 10-12 of 236U/238U sensitivity and 1.9 ns of time resolution are obtained. 236U/238U sensitivity of TOF-E detection system has improved two orders of magnitude better than that of previous gas ionization chamber. Moreover, unknown species other than uranium isotopes were also observed in the measurement of a surface soil sample, which has demonstrated that TOF-E detection system has a higher sensitivity in particle identification. With its high sensibility in mass determination, this TOF-E detection system could also be used in other heavy isotope AMS.

Keywords

Acknowledgement

We appreciate the assistance from Dr. Peter Steier (VERA) and Dr. Michael Hotchkis (ANSTO) for developing the TOF-E detection system.

References

  1. X.L. Zhao, M.J. Nadeau, L.R. Kilius, A.E. Litherland, The first detection of naturally-occurring 236U with accelerator mass spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 92 (1994) 249-253. https://doi.org/10.1016/0168-583X(94)96014-3
  2. A. Sakaguchi, K. Kawai, P. Steier, F. Quinto, K. Mino, J. Tomita, M. Hoshi, N. Whitehead, M. Yamamoto, First results on 236U levels in global fallout, Sci. Total Environ. 407 (2009) 4238-4242. https://doi.org/10.1016/j.scitotenv.2009.01.058
  3. K. Hain, P. Steier, M.B. Froehlich, R. Golser, X. Hou, J. Lachner, T. Nomura, J. Qiao, F. Quinto, A. Sakaguchi, 233 U/236 U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout, Nat. Commun. 11 (2020) 1-11. https://doi.org/10.1038/s41467-019-13993-7
  4. J. Qiao, K. Hain, P. Steier, First dataset of 236U and 233U around the Greenland coast: a 5-year snapshot (2012-2016), Chemosphere 257 (2020), 127185.
  5. P. Steier, M. Bichler, L.K. Fifield, R. Golser, W. Kutschera, A. Priller, F. Quinto, S. Richter, M. Srncik, P. Terrasi, Natural and anthropogenic 236U in environmental samples, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 266 (2008) 2246-2250. https://doi.org/10.1016/j.nimb.2008.03.002
  6. L.K. Fifield, Accelerator mass spectrometry of the actinides, Quat. Geochronol. 3 (2008) 276-290. https://doi.org/10.1016/j.quageo.2007.10.003
  7. M. De Cesare, N. De Cesare, A. D'Onofrio, L.K. Fifield, L. Gialanella, F. Terrasi, Mass and abundance 236U sensitivities at CIRCE, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 361 (2015) 483-487, https://doi.org/10.1016/j.nimb.2015.05.029.
  8. L.K. Fifield, S.G. Tims, J.O. Stone, D.C. Argento, M. De Cesare, Ultra-sensitive measurements of 36Cl and 236U at the Australian national university, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 294 (2013) 126-131. https://doi.org/10.1016/j.nimb.2012.04.028
  9. P. Steier, F. Dellinger, O. Forstner, R. Golser, K. Knie, W. Kutschera, A. Priller, F. Quinto, M. Srncik, F. Terrasi, Analysis and application of heavy isotopes in the environment, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 268 (2010) 1045-1049. https://doi.org/10.1016/j.nimb.2009.10.094
  10. P. Steier, K. Hain, U. Klotzli, J. Lachner, A. Priller, S. Winkler, R. Golser, The actinide beamline at VERA, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 458 (2019) 82-89. https://doi.org/10.1016/j.nimb.2019.07.031
  11. W.C. Wiley, I.H. McLaren, Time-of-Flight mass spectrometer with improved resolution, Rev. Sci. Instrum. 26 (1955) 1150-1157, https://doi.org/10.1063/1.1715212.
  12. W.W. Moses, Time of flight in PET revisited, IEEE Trans. Nucl. Sci. 50 (2003) 1325-1330, https://doi.org/10.1109/TNS.2003.817319.
  13. M. De Cesare, A. Di Leva, D. Schurmann, L. Gialanella, F. Strieder, R. Kunz, D. Rogalla, N. De Cesare, A.D. Onofrio, G. Imbriani, A TOF-E detector for ERNA recoil separator, Mem.-Soc. Astron. Ital. 78 (2007) 458.
  14. M. Li, Y. Guan, C. Lu, J. Zhang, X. Yuan, L. Duan, H. Yang, R. Hu, Z. He, X. Wei, Measurement of TOF of fast neutrons with 238U target, Nucl. Eng. Technol. 53 (2021) 1964-1969. https://doi.org/10.1016/j.net.2020.12.003
  15. S. Lim, D. Kim, J.-G. Kang, J.-J. Dang, P. Lee, G. Kim, K.-J. Chung, Y.S. Hwang, Development of neutron time-of-flight measurement system for 1.7-MV tandem proton accelerator with lithium target, Nucl. Eng. Technol. 54 (2022) 437-441. https://doi.org/10.1016/j.net.2021.03.030
  16. W. Xiang-Gao, H. Ming, S. Guo-Zhu, L. Chao-Li, W. Wei, Z. Da-Wei, H. ChunTang, S. Hong-Tao, W. Shao-Lei, H. Guo-Zhu, Primary result of 236U measurement with accelerator mass spectrometry at CIAE, Chin, Phys. C. 34 (2010) 192.
  17. P. Steier, F. Dellinger, O. Forstner, R. Golser, K. Knie, W. Kutschera, A. Priller, F. Quinto, M. Srncik, F. Terrasi, Analysis and application of heavy isotopes in the environment, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 268 (2010) 1045-1049. https://doi.org/10.1016/j.nimb.2009.10.094
  18. H. Matsuzaki, Y. Miyake, K. Nakashoji, H. Tokuyama, Y.S. Tsuchiya, H. Kusuno, M. Toya, Current status of MALT AMS facility: a report of updated performance and recent achievement, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 463 (2020) 55-63. https://doi.org/10.1016/j.nimb.2019.11.010
  19. M.L. Roberts, J.R. Burton, K.L. Elder, B.E. Longworth, C.P. McIntyre, K.F. von Reden, B.X. Han, B.E. Rosenheim, W.J. Jenkins, E. Galutschek, A.P. McNichol, A high-performance 14C accelerator mass spectrometry system, Radiocarbon 52 (2010) 228-235, https://doi.org/10.1017/S0033822200045252.
  20. J. Barker, R.C. Garner, Biomedical applications of accelerator mass spectrometry-isotope measurements at the level of the atom, Rapid Commun. Mass Spectrom. 13 (1999) 285-293, https://doi.org/10.1002/(SICI)1097-0231 (19990228)13:4<285::AID-RCM469>3.0.CO;2-R.
  21. G.C. Young, S. Corless, C.C. Felgate, P.V. Colthup, Comparison of a 250 kV single-stage accelerator mass spectrometer with a 5 MV tandem accelerator mass spectrometer e fitness for purpose in bioanalysis, Rapid Commun. Mass Spectrom. 22 (2008) 4035-4042, https://doi.org/10.1002/rcm.3829.
  22. D. Nagae, Y. Abe, S. Okada, S. Omika, K. Wakayama, S. Hosoi, S. Suzuki, T. Moriguchi, M. Amano, D. Kamioka, Z. Ge, S. Naimi, F. Suzaki, N. Tadano, R. Igosawa, K. Inomata, H. Arakawa, K. Nishimuro, T. Fujii, T. Mitsui, Y. Yanagisawa, H. Baba, S. Michimasa, S. Ota, G. Lorusso, Yu.A. Litvinov, A. Ozawa, T. Uesaka, T. Yamaguchi, Y. Yamaguchi, M. Wakasugi, Development and operation of an electrostatic time-of-flight detector for the Rare RI storage Ring, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 986 (2021), 164713, https://doi.org/10.1016/j.nima.2020.164713.
  23. Y.-J. Guan, H.-J. Wang, M. De Cesare, F. Terrasi, The AMS measurement of 236U at CIRCE, Nucl. Sci. Tech. 28 (2017) 98, https://doi.org/10.1007/s41365-017-0252-5.
  24. K. Cranmer, Kernel estimation in high-energy physics, Comput. Phys. Commun. 136 (2001) 198-207. https://doi.org/10.1016/S0010-4655(00)00243-5
  25. A.K. Jain, R.P.W. Duin, J. Mao, Statistical pattern recognition: a review, IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000) 4-37, https://doi.org/10.1109/34.824819.
  26. C. Miao, L. Su, Q. Sun, Q. Duan, A nonstationary bias-correction technique to remove bias in GCM simulations, J. Geophys. Res. Atmospheres. 121 (2016) 5718-5735. https://doi.org/10.1002/2015JD024159
  27. L. Zheng, G.-F. Wang, M.-L. Qiu, Y.-J. Chu, M. Xu, P. Yin, Ionoluminescence spectra of a ZnO single crystal irradiated with 2.5 MeV H+ ions, Chin. Phys. Lett. 34 (2017), 087801.
  28. S. Purushothaman, S.A. San Andres, J. Bergmann, T. Dickel, J. Ebert, H. Geissel, C. Hornung, W.R. Plass, C. Rappold, C. Scheidenberger, Hyper-EMG: a new probability distribution function composed of Exponentially Modified Gaussian distributions to analyze asymmetric peak shapes in high-resolution time-of-flight mass spectrometry, Int. J. Mass Spectrom. 421 (2017) 245-254. https://doi.org/10.1016/j.ijms.2017.07.014
  29. A. Sakaguchi, P. Steier, Y. Takahashi, M. Yamamoto, Isotopic compositions of 236U and Pu isotopes in "black substances" collected from roadsides in Fukushima Prefecture: fallout from the Fukushima Dai-ichi Nuclear Power Plant accident, Environ. Sci. Technol. 48 (2014) 3691-3697. https://doi.org/10.1021/es405294s
  30. G. Yang, M.S. Rahman, H. Tazoe, J. Hu, Y. Shao, M. Yamada, 236U and radiocesium in river bank soil and river sediment in Fukushima Prefecture, after the Fukushima Daiichi Nuclear Power Plant accident, Chemosphere 225 (2019) 388-394. https://doi.org/10.1016/j.chemosphere.2019.03.061
  31. G. Yang, H. Tazoe, K. Hayano, K. Okayama, M. Yamada, Isotopic compositions of 236U, 239Pu, and 240Pu in soil contaminated by the Fukushima daiichi nuclear power plant accident, Sci. Rep. 7 (2017) 1-8. https://doi.org/10.1038/s41598-016-0028-x