DOI QR코드

DOI QR Code

Passivation effect on large volume CdZnTe crystals

  • B. Park (Dept. of Health and Safety Convergence Science, Korea University) ;
  • Y. Kim (Interdisciplinary Program in Precision Public Health, Korea University) ;
  • J. Seo (Dept. of Health and Safety Convergence Science, Korea University) ;
  • J. Byun (Dept. of Health and Safety Convergence Science, Korea University) ;
  • K. Kim (School of Health and Environmental Science, Korea University)
  • 투고 : 2022.04.19
  • 심사 : 2022.06.07
  • 발행 : 2022.12.25

초록

Several cadmium zinc telluride (CZT) crystals were fabricated into radiation detectors using methods that included slicing, dicing, lapping, polishing, and chemical etching. A wet passivation with sodium hypochlorite (NaOCl) was then carried out on the Br-etched detectors. The Te-rich layer on the CZT surface was successfully compensated to the Te oxide layer, which was analyzed with X-ray photoelectron spectroscopy data of both a Br-etched crystal and a passivated CZT crystals. We confirmed that passivation with NaOCl improved the transport property by analyzing the mobility-lifetime product and surface recombination velocity. The electrical and spectroscopic properties of large volume detectors were compared before and after passivation, and then the detectors were observed for a month. Both bar and quasi-hemispherical detectors show an enhancement in performance after passivation. Thus, we could identify the effect of NaOCl passivation on large volume CZT detectors.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C1012161), by Ministry of Environment as "the Graduate school of Particulate matter specialization" and by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000070, Promoting of expert for energy industry advancement in the field of radiation technology).

참고문헌

  1. R.B. James, T.E. Schlesinger, J. Lund, M. Schieber, Semiconductors and Semimetals Semiconductors for Room Temperature Nuclear Detector Applications, Elsevier, New York, 1995.
  2. A.J. Nelson, A.M. Conway, C.E. Reinhardt, J.L. Ferreira, R.J. Nikolic, S.A. Payne, Study of surface passivation and Contact Deposition Techniques in CdZnTe X-Ray and gamma-ray detectors, Froc. MRS. 1038 (2008), https://doi.org/10.1109/NSSMIC.2012.6551942.
  3. S.U. Egarievwe, A. Hossain, I.O. Okwechime, A.A. Egarievwe, D.E. Jones, U.N. Roy, R.B. James, Effects of chemical treatments on CdZnTe X-ray and gamma-ray detectors, IEEE Trans. Nucl. Sci. 63 (2016) 1091, https://doi.org/10.1109/TNS.2016.2527779.
  4. G.W. Wright, R.B. James, D. Chinn, B.A. Brunett, R.W. Olsen, J. Van Scyoc, M. Clift, A. Burger, K. Chattopadhyay, D. Shi, R. Wingfield, Evaluation of NH4F/H2O2 effectiveness as a surface passivation agent for Cd1-xZnxTe crystals, Proc. SPIE 4141 (2000) 324, https://doi.org/10.1117/12.407594.
  5. S.U. Egarievwe, U.N. Roy, C.A. Goree, B.A. Harrison, J. Jones, R.B. James, Ammonium fluoride passivation of CdZnTeSe sensors for applications in nuclear detection and medical imaging, Sensors 19 (2019) 3271, https://doi.org/10.3390/s19153271.
  6. L. Marchini, A. Zappettini, E. Gombia, R. Mosca, M. Pavesi, Study of surface treatment effects on the metal-CdZnTe interface, IEEE Trans. Nucl. Sci. 56 (2009) 1823, https://doi.org/10.1109/TNS.2009.2022831.
  7. K.H. Kim, V. Carcelen, A.E. Bolotnikov, G.S. Camarda, R. Gul, A. Hossain, G. Yang, Y. Cui, R.B. James, Effective surface passivation of CdMnTe materials, J. Electron. Mater. 39 (2010) 1015, https://doi.org/10.1007/s11664-010-1090-y.
  8. K.H. Kim, R. Tappero, A.E. Bolotinikov, A. Hossain, G. Yang, R.B. James, P. Fochuk, Long-term stability of ammonium-sulfide-and ammonium-fluoride-passivated CdMnTe detectors, J. Korean Phys. Soc. 66 (2015) 1532, https://doi.org/10.3938/jkps.66.1532.
  9. D.E. Jones, S.U. Egarievwe, A. Hossain, I.O. Okwechime, M.L. Drabo, J. Hall, A.L. Adams, S.O. Babalola, G.S. Camarda, A.E. Bolotnikov, W. Chan, R.B. James, Study of surface passivation and Contact Deposition Techniques in CdZnTe X-Ray and gamma-ray detectors, IEEE. Nucl. Sci. Conf. R. (2012) 4124, https://doi.org/10.1109/NSSMIC.2012.6551942.
  10. K. Kim, J.H. Won, S.H. Cho, J.H. Suh, P.K. Cho, J. Hong, Y.R. Han, S.U. Kim, Passivation of semi-insulating polycrystalline CdZnTe films, J. Korean Phys. Soc. 53 (1) (2008) 317, https://doi.org/10.3938/jkps.53.317.
  11. K.H. Kim, G.S. Camarda, A.E. Bolotnikov, R.B. James, J. Hong, S. Kim, Improved carrier-transport properties of passivated CdMnTe crystals, J. Appl. Phys. 105 (2009), 093705, https://doi.org/10.1063/1.3121502.
  12. K.T. Chen, D.T. Shi, H. Chen, B. Granderson, M.A. George, W.E. Collins, A. Burger, Study of oxidized cadmium zinc telluride surfaces, J. Vac. Sci. Technol. A. 15 (1997) 850, https://doi.org/10.1116/1.580719.
  13. S.J. Hwang, H.S. Yu, A.E. Bolotnikov, R.B. James, K.H. Kim, Anomalous Te inclusion size and distribution in CdZnTeSe, IEEE Trans. Nucl. Sci. 66 (2019) 2329, https://doi.org/10.1109/TNS.2019.2944969.
  14. Y. Cui, M. Groza, D. Hillman, A. Burger, R.B. James, Study of surface recombination velocity of Cd1-xZnxTe radiation detectors by direct current photoconductivity, J. Appl. Phys. 92 (5) (2002) 2556, https://doi.org/10.1063/1.1497696.
  15. http://srdata.nist.gov/xps/.
  16. Y. Eisen, Y. Horovitz, Correction of incomplete charge collection in CdTe detectors, Nucl. Instrum. Meth. A. 353 (1994) 60, https://doi.org/10.1016/0168-9002(94)91603-9.