DOI QR코드

DOI QR Code

Effect of mitigation strategies in the severe accident uncertainty analysis of the OPR1000 short-term station blackout accident

  • Wonjun Choi (Department of Nuclear Engineering, Hanyang University) ;
  • Kwang-Il Ahn (Korea Atomic Energy Research Institute) ;
  • Sung Joong Kim (Department of Nuclear Engineering, Hanyang University)
  • 투고 : 2022.02.25
  • 심사 : 2022.07.31
  • 발행 : 2022.12.25

초록

Integrated severe accident codes should be capable of simulating not only specific physical phenomena but also entire plant behaviors, and in a sufficiently fast time. However, significant uncertainty may exist owing to the numerous parametric models and interactions among the various phenomena. The primary objectives of this study are to present best-practice uncertainty and sensitivity analysis results regarding the evolutions of severe accidents (SAs) and fission product source terms and to determine the effects of mitigation measures on them, as expected during a short-term station blackout (STSBO) of a reference pressurized water reactor (optimized power reactor (OPR)1000). Three reference scenarios related to the STSBO accident are considered: one base and two mitigation scenarios, and the impacts of dedicated severe accident mitigation (SAM) actions on the results of interest are analyzed (such as flammable gas generation). The uncertainties are quantified based on a random set of Monte Carlo samples per case scenario. The relative importance values of the uncertain input parameters to the results of interest are quantitatively evaluated through a relevant sensitivity/importance analysis.

키워드

과제정보

This work was supported by the International Atomic Energy Agency under the Coordinated Research Project award I31033 on Advancing the State-of-Practice in Uncertainty and Sensitivity Methodologies for Severe Accident Analysis in Water-Cooled Reactors, launched in 2019. This work was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (No. 2022M2D2A1A02061334). This work was also partly supported by the Nuclear Safety Research Program through the Korea Foundation of Nuclear Safety (KoFONS) using the financial resources granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea (No. 2003006-0120-CG100).

참고문헌

  1. K.B. Cady, V.K. Dhir, R.J. Witt, Peer review of models for lower vessel head heat transfer and larson-miller failure criterion proposed for implementation into MELCOR, ERI/NRC 94-202 (1994).
  2. M.P. Manahan, An improved zircaloy-steam reaction model for use with the MARCH 2 (meltdown accident response characteristics) code, in: Proceedings of the International Meeting on Light-Water Reactor Severe Accident Evaluation, Cambridge, MA, 28 Aug - 1 Sep, 1983.
  3. R.M. Ostmeyer, An Approach to Treating Radionuclide Decay Heating for Use in the MELCOR Code System, SNL, Albuquerque, NM, 1985. SAND84-1404, NUREG/CR-4169.
  4. M.T. Farmer, S. Lomperski, D. Kilsdonk, R.W. Aeschlimann, S. Basu, A summary of findings from the melt coolability and concrete interaction (MCCI) Program, in: Proceedings ICAPP '07, Nice, France, May 13-18, 2007.
  5. M.T. Farmer, B.W. Spencer, J.L. Binder, D.J. Hill, Status and future direction of the melt attack and coolability experiments (MACE) Program at argonne national laboratory, in: 9th International Conference on Nuclear Engineering (ICONE-9), Nice, France, April 8-12, 2001.
  6. D.R. Bradley, Modeling of heat transfer between core debris and concrete, in: ANS Proceedings of the 1988 National Heat Transfer Conference, Houston, TX, 1988, pp. 37-49.
  7. T.Y. Chu, M.M. Pilch, J.H. Bentz, J.S. Ludwigsen, W. Lu, L.L. Humperies, Lower Head Failurer Experiments and Analyses, U.S NRC, Washington, DC, 1999. NUREG/CR-5582, SAND98-2047.
  8. D.A. Powers, J.L. Sprung, C.D. Leigh, Isotopes, elements, and chemical classes, in: Fission Product Behavior during Severe LWR Accidents: Recommendations for the MELCOR Code System, SNL, Albuquerque, NM. (Unpublished), 1987.
  9. R.O. Gauntt, N.E. Bixler, K.C. Wagner, An Uncertainty Analysis of the Hydrogen Source Term for a Station Blackout Accident in Sequoyah Using MELCOR 1.8.5, SNL, Albuquerque, NM, 2014, pp. SAND2014-2210, https://doi.org/10.2172/1200657.
  10. M.R. Denman, D.M. Brooks, Fukushima Daiichi Unit 1 Uncertainty Analysis - Exploration of Core Melt Progression Uncertain Parameters - Volume II, SNL, Albuquerque, NM, 2015. SAND2015-6612.
  11. P. Mattie, et al., State-of-the-Art Reactor Consequence Analyses Project: Uncertainty Analysis of the Unmitigated Long-Term Station Blackout of the Peach Bottom Atomic Power Station, U.S NRC, Washington, DC, 2012. NUREG/CR-7155, SAND2012-10702P.
  12. S. Park, K. Il Ahn, Y. Song, Uncertainty analysis of the potential hazard of MCCI during severe accidents for the CANDU6 plant, Sci. Technol. Nucl. Install. 2015 (2015), https://doi.org/10.1155/2015/462941.
  13. R. Chang, J. Schaperow, T. Ghosh, Jonathan Barr, C. Tinkler, M. Stutzke, State-of-the-Art Reactor Consequence Analyses (SOARCA) Report, U.S NRC, Washington, DC, 2012. NUREG-1735.
  14. K. Ross, N. Bixler, S. Weber, C. Sallaberry, J. Jones, State-of-the-Art Reactor Consequence Analyses Project: Uncertainty Analysis of the Unmitigated Short-Term Station Blackout of the Surry Power Station, U.S NRC, Washington, DC, (Draft report), 2019.
  15. R. Gharari, H. Kazeminejad, N. Mataji Kojouri, A. Hedayat, M. Hassan Vand, Application of a severe accident code to the sensitivity and uncertainty analysis of hydrogen production in the WWER1000/V446, Ann. Nucl. Energy 152 (2021) 1-18, https://doi.org/10.1016/j.anucene.2020.108018.
  16. M. D'Onorio, A. Giampaolo, G. Caruso, F. Giannetti, Preliminary uncertainty quantification of the core degradation models in predicting the Fukushima Daiichi unit 3 severe accident, Nucl. Eng. Des. 382 (July) (2021) 1-22, https://doi.org/10.1016/j.nucengdes.2021.111383.
  17. S. Galushin, P. Kudinov, Analysis of the effect of MELCOR modelling parameters on in-vessel accident progression in Nordic BWR, Nucl. Eng. Des. 350 (2019) 243-258. https://doi.org/10.1016/j.nucengdes.2019.04.040
  18. M. Khatib-Rahbar, E. Cazzoli, M. Lee, H. Nourbakhsh, R. Davis, E. Schmidt, A probabilistic approach to quantifying uncertainties in the progression of severe accidents, Nucl. Sci. Eng. 102 (3) (Jul. 1989) 219-259, https://doi.org/10.13182/NSE89-A27476.
  19. L.E. Herranz, et al., The EC MUSA project on management and uncertainty of severe accidents: main pillars and status, Energies 14 (15) (2021) 1-11, https://doi.org/10.3390/en14154473.
  20. https://www.iaea.org/projects/crp/i31033.
  21. K.I. Ahn, Establishment of Best Practice for Uncertainty and Sensitivity Analyses in the Realm of Severe Accident Analysis and Development of Relevant TECDOC. 1st RCM on Advancing the State-Of-Practice in Uncertainty and Sensitivity Methodologies for Severe Acciden, IAEA Headquarters, Vienna, Austria, 2019.
  22. K.-I. Ahn, S.-Y. Park, W. Choi, S.J. Kim, Best-practice severe accident analysis for the OPR1000 short-term SBO sequence using MELCOR2. 2 and MAAP5, Ann. Nucl. Energy 160 (2021) 1-15.
  23. L.L. Humphries, B.A. Beeny, F. Gelbard, D.L. Louie, J. Phillips, MELCOR Computer Code Manuals, Vol. 1: Primer and Users' Guide. Version 2.2, SNL, Albuquerque, 2018. NM, SAND2018-13559.
  24. EPRI, Modular Accident Analysis Program (MAAP5.04). Fauske & Associates (FAI), vols. 1-4, Electric Power Research Institute, USA, 2016.
  25. KEPCO engineering & construction, "the schematics of OPR1000.". https://www.kepco-enc.com/eng/contents.do?key=1532. (Accessed 1 September 2021).
  26. Y. Liao, K. Vierow, Melcor analysis of steam generator tube creep rupture in station blackout severe accident, Nucl. Technol. 152 (3) (2005) 302-313, https://doi.org/10.13182/NT05-5.
  27. G.H. Jung, et al., Development of MELCOR 1.8.6 Input Decks for the OPR1000 Level 2 Phenomenological Uncertainty Analysis (I), KAERI, Daejoen, 2010. KAERI/TR-4113/2010.
  28. Y. Bang, G. Jung, B. Lee, K. Il Ahn, Estimation of temperature-induced reactor coolant system and steam generator tube creep rupture probability under high-pressure severe accident conditions, J. Nucl. Sci. Technol. 49 (8) (2012) 857-866, https://doi.org/10.1080/00223131.2012.703945.
  29. K. Jones, J. Rothe, W. Dunsford, Symbolic Nuclear Analysis Package (SNAP), U.S NRC, Washington, DC, 2009. NUREG/CR-6974.
  30. Applied Programming Technology Inc, Uncertainty Analysis User's Manual Symbolic Nuclear Analysis Package (SNAP), APT Inc., Bloomsburg, PA, 2021.
  31. J.I. Daoud, Multicollinearity and regression analysis, J. Phys. Conf. Ser. 949 (2018) 1, https://doi.org/10.1088/1742-6596/949/1/012009.
  32. K. Il Ahn, S.H. Park, H.D. Kim, H.S. Park, The plant-specific uncertainty analysis for an ex-vessel steam explosion-induced pressure load using a Texas-SAUNA coupled system, Nucl. Eng. Des. 249 (2012) 400-412, https://doi.org/10.1016/j.nucengdes.2012.04.015.
  33. M. Statistics, Determination of Sample Sizes for Setting Tolerance Limits Author (s): S. S. Wilks Source : The Annals of Mathematical Statistics, Vol. 12, No. 1 (Mar., 1941), pp. 91-96 determination of sample sizes for setting tolerance, vol. 12, 2014, pp. 91-96, 1.