DOI QR코드

DOI QR Code

Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

  • Gha-Young Kim (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Junhyuk Jang (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Minsoo Lee (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Mihye Kong (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Seok Yoon (Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute)
  • Received : 2022.02.16
  • Accepted : 2022.07.25
  • Published : 2022.12.25

Abstract

Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and the National Research Foundation of Korea(NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (2021M2E1A1085193, 2021M2E3A2041351).

References

  1. SKB, Design Premises for a KBS-3V Repository Based on Results from the Safety Assessment SR-Can and Some Subsequent Analyses, Svensk Karnbr anslehantering AB, TR-09-22, 2009.
  2. R. Gubner, U. Andersson, Corrosion Resistance of Copper Canister Weld Material, Svensk Karnbr anslehantering AB, TR-07-07, 2007.
  3. T. Hedman, A. Nystrom, C. Thegerstrom, Swedish containers for disposal of spent nuclear fuel and radioactive waste, C. R. Physique 3 (2002) 903-913. https://doi.org/10.1016/S1631-0705(02)01378-6
  4. F. King, L. Ahonen, C. Taxen, U. Vuorinen, L. Werme, Copper Corrosion under Expected Conditions in a Deep Geological Repository, Svensk Karnbranslehantering AB, TR-01-23, 2001.
  5. F. King, C. Lilja, M. Vahanen, Progress in the understanding of the long-term corrosion behavior of copper canisters, J. Nucl. Mater. 438 (2013) 228-237. https://doi.org/10.1016/j.jnucmat.2013.02.080
  6. P. Jakupi, D. Zagidulin, J.J. Noel, D.W. Shoesmith, The impedance properties of the oxide film on the Ni-Cr-Mo Alloy-22 in neutral concentrated sodium chloride solution, Electrochim, Acta 56 (2011) 6251-6259. https://doi.org/10.1016/j.electacta.2010.07.064
  7. F. King, C. Padovani, Review of the corrosion performance of selected canister materials for disposal of UK HLW and/or spent fuel, Corrosion Eng. Sci. Technol. 46 (2) (2011) 82-90. https://doi.org/10.1179/1743278211Y.0000000005
  8. F. King, Waste containers, Compr. Nucl. Mater. 2 (2012) 421-450. https://doi.org/10.1016/B978-0-08-056033-5.00131-2
  9. DOE, Yucca Mountain Repository License Application, US Department of Energy, DOE/RW-0573, 2008.
  10. M. Ochoa, M.A. Rodriguez, S.B. Farina, Corrosion of high purity copper in solutions containing NaCl, Na2SO4 and NaHCO3 at difference temperatures, Procedia Mater. Sci. 9 (2015) 460-468. https://doi.org/10.1016/j.mspro.2015.05.017
  11. R. Sandstrom, R. Wu, Origin of the Extra Low Creep Ductility of Copper without Phosphorous, Svensk Karnbranslehantering AB, TR-07-02.
  12. F. King, C. Lilja, K. Pedersen, P. Pikanen, M. Vahanen, An Update of the State-Of-The-Art Report on the Corrosion of Copper under Expected Conditions in a Deep Geologic Repository, Svensk Karnbranslehantering AB, TR-10-67.
  13. L.J. Knob, D.L. Olson, Metals handbook, Corrosion 13 (1987) 669, ninth ed.
  14. P. Refait, J.A. Bourdoiseau, M. Jeannin, D.D. Nguyen, A. Romaine, R. Sabot, Electrochemical formation of carbonated corrosion products on carbon steel in deaerated solutions, Electrochim. Acta 79 (2012) 210-217. https://doi.org/10.1016/j.electacta.2012.06.108
  15. H. Luo, H. Su, B. Li, G. Ying, Electrochemical and passive behavior of tin alloyed ferritic stainless steel in concrete environment, Appl. Surf. Sci. 439 (2018) 232-239. https://doi.org/10.1016/j.apsusc.2017.12.243
  16. A. Bacelis, L. Veleva, M.A. Alpuche-Aviles, Copper corrosion behavior in simulated concrete-pore solutions, Metals 10 (4) (2020) 474-493. https://doi.org/10.3390/met10040474
  17. A.M. Fekry, R.M. El-Sherif, Electrochemical corrosion behavior of magnesium and titanium alloys in simulated body fluid, Electrochim. Acta 54 (2009) 7280-7285. https://doi.org/10.1016/j.electacta.2009.07.047
  18. Q. Zhang, M. Zhen, Y. Huang, H.J. Kunte, X. Wang, Y. Liu, C. Zheng, Long term corrosion estimation of carbon steel, titanium and its alloy in backfill material of compacted bentonite for nuclear waste repository, Sci. Rep. 9 (2019) 3195-3212. https://doi.org/10.1038/s41598-019-39751-9
  19. B. Rosborg, T. Kosec, A. Kranjc, J. Pan, A. Legat, Electrochemical impedance spectroscopy of pure copper exposed in bentonite under oxic conditions, Electrochim. Acta 56 (2011) 7861-7870.
  20. I.D. Raistrick, J.R. MacDonald, D.R. Francschetti, Chapter 2, in: J.R. MacDonald (Ed.), Impedance Spectroscopy: Emphasizing Solid Materials and Systems, John Wiley & Sons, New York, 1987.
  21. Y. Van Ingelgem, A. Hubin, J. Vereecken, Investigation of the first stages of the localized corrosion of pure copper combining EIS, FE-SEM and FE-AES, Electrochim. Acta 52 (2007) 7642-7650. https://doi.org/10.1016/j.electacta.2006.12.039
  22. W.A. Badawy, K.M. Ismail, A.M. Fathi, Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solutions, Electrochim. Acta 50 (2005) 3603-3608. https://doi.org/10.1016/j.electacta.2004.12.030
  23. J.-P. Diard, J.-M. Le Canut, B. Le Goreec, C. Montella, Copper electrodissolution in 1 M HCl at low current densities. II. Electrochemical impedance spectroscopy study, Electrochim. Acta 43 (1998) 2485-2501. https://doi.org/10.1016/S0013-4686(97)10156-6
  24. A.M. Fenelon, C.B. Breslin, The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties, Electrochim. Acta 47 (2002) 4467-4476. https://doi.org/10.1016/S0013-4686(02)00518-2
  25. E.M. Sherif, S.-M. Park, Inhibition of copper corrosion in 3.0% NaCl solution by N-phenyl-1,4-phenylenediamine, J. Electrochem. Soc. 152 (2005) B428-B433. https://doi.org/10.1149/1.2018254
  26. T. Tuken, B. Yazici, M. Erbil, The use of polyindole for prevention of copper corrosion, Surf. Coat. Technol 200 (2006) 4802-4809. https://doi.org/10.1016/j.surfcoat.2005.04.023
  27. K. Rahmouni, M. Keddam, A. Srhiri, H. Takenouti, Corrosion of copper in 3% NaCl solution polluted by sulphide ions, Corros. Sci. 47 (2005) 3249-3266. https://doi.org/10.1016/j.corsci.2005.06.017
  28. G. Cicileo, B. Rosales, F. Varela, J. Vilche, Comparative study of organic inhibitors of copper corrosion, Corros. Sci. 41 (1999) 1359-1375. https://doi.org/10.1016/S0010-938X(98)00190-5
  29. A. Palit, S.O. Pehkonen, Copper corrosion in distribution systems: evaluation of a homogeneous Cu2O film and a natural corrosion scale as corrosion inhibitors, Corros. Sci. 42 (2000) 1801-1822. https://doi.org/10.1016/S0010-938X(00)00024-X
  30. B. Trachli, M. Keddam, H. Takenouti, A. Srhiri, Protective effect of electropolymerized 3-amino 1,2,4-triazole towards corrosion of copper in 0.5 M NaCl, Corros. Sci. 44 (2002) 997-1008. https://doi.org/10.1016/S0010-938X(01)00124-X
  31. M.B. Valcarce, S.R. De Sanchez, M. V azquez, A comparative analysis of copper and brass surface films in contact with tap water, J. Mater. Sci. 41 (2006) 1999-2007. https://doi.org/10.1007/s10853-006-4499-1
  32. A. Srivastava, R. Balasubramaniam, Microstructural characterization of copper corrosion in aqueous and soil environments, Mater. Charact 55 (2005) 127-135. https://doi.org/10.1016/j.matchar.2005.04.004
  33. F. Brizuela, R. Procaccini, S. Cere, M. Vazquez, Anodically grown films on copper and copper-nickel alloys in slightly alkaline solutions, J. Appl. Electrochem. 36 (2006) 583-590. https://doi.org/10.1007/s10800-005-9110-y
  34. M. Galai, H. Benqlilou, M.E. Touhami, T. Belhaj, K. Berrami, H. El Kafssaoui, Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil, Environ. Eng. Res. 23 (2018) 164-174. https://doi.org/10.4491/eer.2017.077