DOI QR코드

DOI QR Code

A study of the NF3 plasma etching reaction with cobalt oxide films grown on an inorganic compounds

  • Jae-Yong Lee (Korea Radioactive Waste Agency) ;
  • Kyung-Min Kim (Department of Nuclear Engineering, Hanyang University) ;
  • Min-Seung Ko (Department of Nuclear Engineering, Hanyang University) ;
  • Yong-Soo Kim (Department of Nuclear Engineering, Hanyang University)
  • 투고 : 2022.06.14
  • 심사 : 2022.08.19
  • 발행 : 2022.12.25

초록

In this study, an NF3 plasma etching reaction with a cobalt oxide (Co3O4) films grown on the surface of inorganic compounds using granite was investigated. Experimental results showed that the etching rate can be up to 1.604 mm/min at 380 ℃ under 150 W of RF power. EDS and XPS analysis showed that main reaction product is CoF2, which is generated by fluorination in NF3 plasma. The etching rate of cobalt oxide films grown on inorganic compounds in this study was affected by surface roughness and etch selectivity. This study demonstrates that the plasma surface decontamination can effectively and efficiently remove contaminated nuclides such as cobalt attached to aggregate in concrete generated when decommissioning of nuclear power plants.

키워드

과제정보

This work was supported by a Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20191510301300) and by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry, & Energy, Republic of Korea (No. 20184030201970).

참고문헌

  1. IAEA, Managing low radioactivity material from the decommissioning of nuclear facilities, in: TECHNICAL REPORTS, IAEA, VIENNA, 2008, p. 201.
  2. U.S. Chung, et al., Current Status of Decommissioning Projects and Their Strategies in Advanced Countries, Korea, Republic of, 2007, p. 236.
  3. M. Snyder, Characterization and Remediation of Contaminated Concrete, Electric Power Research Institute, 2015, p. 158.
  4. Y. Min Byung, et al., Separation of radionuclide from dismantled concrete waste, J. Korean Radioact. Waste Soc. 7 (2) (2009) 79-86.
  5. R. Castellani, et al., Efficiency enhancement of decontamination gels by a superabsorbent polymer, Colloids Surf. A Physicochem. Eng. Asp. 454 (2014) 89-95. https://doi.org/10.1016/j.colsurfa.2014.04.022
  6. W.S. Kim, et al., Effect of particle-size distribution on chemical washing experiment of uranium contaminated concrete, in: Proceedings of the KNS Autumn Meeting, KNS, Korea, Republic of, 2011.
  7. A. Jestin, et al., A concrete bio-decontamination process in nuclear substructures: effects of organic acids, in: EUROCORR 2004: Long Term Prediction and Modeling of Corrosion, France, 2004.
  8. D. Gurau, R. Deju, The use of chemical gel for decontamination during decommissioning of nuclear facilities, Radiat. Phys. Chem. 106 (2015) 371-375. https://doi.org/10.1016/j.radphyschem.2014.08.022
  9. M.D. Kaminski, M.R. Finck, C.J. Mertz, Composition Suitable for Decontaminating a Porous Surface Contaminated with Cesium, Google Patents, 2010.
  10. M. Koh, et al., Surface decontamination of radioactive metal wastes using acid-in-supercritical CO2 emulsions, Ind. Eng. Chem. Res. 47 (2) (2008) 278-283. https://doi.org/10.1021/ie070865m
  11. M.T. Harris, D.W. DePaoli, M. Ally, Modeling the electrokinetic transport of strontium and cesium through a concrete disk, Separ. Purif. Technol. 11 (3) (1997) 173-184. https://doi.org/10.1016/S1383-5866(97)00019-1
  12. M.T. Harris, D.W. DePaoli, M.R. Ally, Modeling the electrokinetic decontamination of concrete, Separ. Sci. Technol. 32 (1-4) (1997) 827-848. https://doi.org/10.1080/01496399708003232
  13. J. Tripp, et al., Cleaning and decontamination using strippable and protective coatings at the Idaho national engineering and environmental laboratory, in: Conference: Waste Management '99, US, Tucson, AZ, 02/28/1999-03/04/1999, p. 8. Other Information: PBD: 1 Mar 1999. 1999: United States. p. Medium: P; Size.
  14. W.D. Bostick, et al., Electroosmotic decontamination of concrete, in: United States. P. Medium vol. 73, Size, 1993.
  15. K.I. Popov, et al., Removal of cesium from the porous surface via the electrokinetic method in the presence of a chelating agent, Colloid J. 68 (6) (2006) 743-748. https://doi.org/10.1134/S1061933X06060111
  16. K. Popov, et al., Electrokinetic remediation of concrete: effect of chelating agents, Environ. Pollut. 153 (1) (2008) 22-28. https://doi.org/10.1016/j.envpol.2008.01.014
  17. M. Castellote, C. Andrade, C. Alonso, Nondestructive decontamination of mortar and concrete by electro-kinetic methods: application to the extraction of radioactive heavy metals, Environ. Sci. Technol. 36 (10) (2002) 2256-2261. https://doi.org/10.1021/es015683c
  18. D.W. DePaoli, M.T. Harris, M.R. Ally, Testing and evaluation of electrokinetic decontamination of concrete, in: United States. P. Medium, Size, 1996, p. 133.
  19. F. Frizon, S. Lorente, C. Auzuech, Nuclear decontamination of cementitious materials by electrokinetics: an experimental study, Cement Concr. Res. 35 (10) (2005) 2018-2025. https://doi.org/10.1016/j.cemconres.2005.02.008
  20. G.N. Kim, W.K. Choi, K.W. Lee, Decontamination of radioactive concrete using electrokinetic technology, J. Appl. Electrochem. 40 (6) (2010) 1209-1216. https://doi.org/10.1007/s10800-010-0088-8
  21. G.N. Kim, et al., Washing-electrokinetic decontamination for concrete contaminated with cobalt and cesium, Nucl. Eng. Technol. 41 (8) (2009) 1079-1086. https://doi.org/10.5516/NET.2009.41.8.1079
  22. H. Lomasney, Electrokinetic Decontamination of Concrete, 1995. United States. p. 6.
  23. A. Anthofer, W. Lippmann, A. Hurtado, Laser decontamination of epoxy painted concrete surfaces in nuclear plants, Opt Laser. Technol. 57 (2014) 119-128. https://doi.org/10.1016/j.optlastec.2013.09.034
  24. E. Arifi, et al., Reduction of contaminated concrete waste by recycling aggregate with the aid of pulsed power discharge, Construct. Build. Mater. 67 (2014) 192-196. https://doi.org/10.1016/j.conbuildmat.2014.06.001
  25. Z. Bazant, G. Zi, Decontamination of radionuclides from concrete by microwave heating I: theory, J. Eng. Mech-asce - J ENG MECH-ASCE 129 (2003).
  26. A. Akbar Nezhad, K. Ong, Microwave decontamination of concrete, Mag. Concr. Res. 62 (2010) 879-885. https://doi.org/10.1680/macr.2010.62.12.879
  27. T.L. White, et al., Removal of contaminated concrete surfaces by microwave heating: phase 1 results, in: Conference: Waste Management '92, Tucson, AZ, United States), 1992, 1-5 Mar 1992, United States. p. Medium: X; Size: Pages: (10 pp.).
  28. White, T.L., et al., Phase 2 microwave concrete decontamination results, in Conference: Waste Management '95, Tucson, AZ (United States), 26 Feb - 2 Mar 1995; Other Information: PBD: [1995]. 1995: United States. p. Medium: ED; Size: 11 p.
  29. M. Laraia, Nuclear Decommissioning: Planning, Execution and International Experience, Elsevier Science, 2012.
  30. D.C. Echert, M. Hashish, M.H. Marvin, Abrasive-waterjet Cutting of Thick Concrete and Waterjet Cleaning for Nuclear Facility Decommissioning and Decontamination, 1987, pp. VI80-VI94. United States.
  31. F. Moggia, et al., Nitrojet ® : a versatile tool for decontamination, Cut. Con. Scabbling. 11225 (2011).
  32. T. System, Concrete decontamination by electro-hydraulic scabbling (EHS). Final report, United States. p. Medium (1997). Size: 174.
  33. T.W. Lynch, Diamond Blade Grinding as a Means for Removing Surface Contamination from Concrete, United States, 1980, pp. 55-61.
  34. P. O'Sullivan, J.G. Nokhamzon, E. Cantrel, Decontamination and dismantling of radioactive concrete structures, NEA News 28 (2) (2010) 27-29.
  35. B.L. Woods, R.F. GoZsett, APPLICATION OF DIAMOND TOOLS WHEN DECONTAMINATING CONCRETE, 1980.
  36. K. Tatenuma, et al., Newly developed decontamination technology based on gaseous reactions converting to carbonyl and fluoric compounds, Nucl. Technol. 124 (2) (1998) 147-164. https://doi.org/10.13182/NT98-A2915
  37. Y.S. Kim, S.H. Jeon, C.H. Jung, Fluorination reaction of uranium dioxide in CF4/ O2/N2 r.f. plasma, Ann. Nucl. Energy 30 (11) (2003) 1199-1209. https://doi.org/10.1016/S0306-4549(03)00039-2
  38. Y.-s. Kim, et al., Uranium dioxide reaction in CF4/O2 RF plasma, J. Nucl. Mater. 270 (1) (1999) 253-258. https://doi.org/10.1016/S0022-3115(98)00906-4
  39. J.C. Martz, et al., Demonstration of plutonium etching in a CF4O2 RF glow discharge, J. Nucl. Mater. 182 (1991) 277-280. https://doi.org/10.1016/0022-3115(91)90442-A
  40. J.M. Veilleux, et al., Etching of UO2 in NF3 RF plasma glow discharge, J. Nucl. Mater. 277 (2) (2000) 315-324. https://doi.org/10.1016/S0022-3115(99)00154-3
  41. H.F. Windarto, et al., Removal of oxide film prepared under BWR condition by using atmospheric CF4/O2 plasma decontamination process, J. Nucl. Sci. Technol. 37 (10) (2000) 913-918. https://doi.org/10.1080/18811248.2000.9714972
  42. X. Yang, , M.M., S.E. Babayan, G.R. Nowling, R.F. Hicks, Etching of uranium oxide with a non-thermal, atmospheric pressure plasma, J. Nucl. Mater. 324 (2004) 134-139. https://doi.org/10.1016/j.jnucmat.2003.09.012
  43. K. Fujiwara, et al., A new method for decontamination of radioactive waste using low-pressure arc discharge, Corrosion Sci. 48 (6) (2006) 1544-1559. https://doi.org/10.1016/j.corsci.2005.04.010
  44. Y.-H. Kim, et al., Decontamination of radioactive metal surface by atmospheric pressure ejected plasma source, Surf. Coating. Technol. 171 (2002) 317-320.
  45. Y.-s. Kim, Y.-d. Seo, M. Koo, Decontamination of metal surface by reactive cold plasma: removal of cobalt, J. Nucl. Sci. Technol. 41 (11) (2004) 1100-1105. https://doi.org/10.1080/18811248.2004.9726335
  46. S.H. Jeon, Y.s. Kim, A study on plasma etching reaction of cobalt for metallic surface decontamination, J. Korean Radioact. Waste Soc. 6 (1) (2008) 17-23.
  47. S.H. Jeon, Y.S. Kim, C.H. Jung, Cold plasma processing and plasma chemistry of metallic cobalt surface, Plasma Chem. Plasma Process. 28 (5) (2008) 617.
  48. J. Lee, K. Kim, Y.-S. Kim, A study on the NF3 plasma etching reaction with cobalt oxide grown on Inconel base metal surface, Plasma Chem. Plasma Process. 39 (4) (2019) 1145-1159. https://doi.org/10.1007/s11090-019-09979-4
  49. M. Achternbosch, et al., Heavy Metals in Cement and Concrete Resulting from the Co-incineration of Wastes in Cement Kilns with Regard to the Legitimacy of Waste Utilisation, 2003.
  50. D. Nicholls, 41 - cobalt, in: D. Nicholls (Ed.), The Chemistry of Iron, Cobalt and Nickel, Pergamon, 1973, pp. 1053-1107.
  51. T. Noguchi, Resource Recycling in Concrete: Present and Future, Stock Management for Sustainable Urban Regeneration, 2009, pp. 255-274.
  52. K.J. Clay, et al., Characterization of a-C:H:N deposition from CH4/N2 rf plasmas using optical emission spectroscopy, J. Appl. Phys. 79 (9) (1996) 7227-7233. https://doi.org/10.1063/1.361439
  53. N. Krstulovi c, et al., Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil, J. Phys. Appl. Phys. 39 (17) (2006), 3799.
  54. R. Bogdanowicz, Investigation of H2:CH4 plasma composition by means of spatially resolved optical spectroscopy, Acta Phys. Pol., A 114 (6 A) (2008) A33-A38. https://doi.org/10.12693/APhysPolA.114.A-33
  55. N. Krstulovic, et al., An optical-emission-spectroscopy characterization of oxygen plasma during the oxidation of aluminium foils, Materiali in Tehnologije 43 (5) (2009) 245-249.
  56. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Elsevier Science, 2012.
  57. X. Niu, et al., NF3 decomposition over some metal oxides in the absence of water, J. Nat. Gas Chem. 19 (5) (2010) 463-467. https://doi.org/10.1016/S1003-9953(09)60107-9
  58. R.D. Scheele, et al., Thermal NF3 fluorination/oxidation of cobalt, yttrium, zirconium, and selected lanthanide oxides, J. Fluor. Chem. 146 (2013) 86-97. https://doi.org/10.1016/j.jfluchem.2012.12.013
  59. J.F. Moulder, J. Chastain, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corporation, 1992.
  60. A.V. Naumkin, et al., NIST X-Ray Photoelectron Spectroscopy Database, 2012.
  61. W. Li, et al., Decomposition of CoF3 during battery electrode processing, J. Fluor. Chem. 205 (2018) 43-48. https://doi.org/10.1016/j.jfluchem.2017.11.012
  62. T.C. C, W. H.D, Tungsten Etching in CF4 and SF6 discharges, J. Electrochem. Soc. 131 (1) (1984) 115-120. https://doi.org/10.1149/1.2115489
  63. S. El-Genk Mohamed, H. Saber Hamed, J. Veilleux, Analysis and modeling of decontamination experiments of depleted uranium dioxide in RF plasma, Ann. N. Y. Acad. Sci. 891 (1) (2006) 207-215.
  64. G.S. Oehrlein, Y. Kurogi, Sidewall surface chemistry in directional etching processes, Mater. Sci. Eng. R Rep. 24 (4) (1998) 153-183. https://doi.org/10.1016/S0927-796X(98)00016-3
  65. A. Eksaeva, et al., Surface roughness effect on Mo physical sputtering and redeposition in the linear plasma device PSI-2 predicted by ERO2.0, Nuclear Mater. Energy. 19 (2019) 13-18.
  66. K.R. Williams, K. Gupta, M. Wasilik, Etch rates for micromachining processing-Part II, J. Microelectromech. Syst. 12 (6) (2003) 761-778. https://doi.org/10.1109/JMEMS.2003.820936
  67. D. Flamm, C. Mogab, E. Sklaver, Reaction of fluorine atoms with SiO2, J. Appl. Phys. 50 (10) (1979) 6211-6213. https://doi.org/10.1063/1.325755
  68. X. Li, et al., Surface chemical changes of aluminum during NF 3-based plasma processing used for in situ chamber cleaning, J. Vac. Sci. Technol.: Vacuum Surf. Film. 22 (1) (2004) 158-164. https://doi.org/10.1116/1.1633566