DOI QR코드

DOI QR Code

Establishing a pre-mining baseline of natural radionuclides distribution and radiation hazard for the Bled El-Hadba sedimentary phosphate deposits (North-Eastern Algeria)

  • S. Benarous (Laboratory of Theoretical Physics and Radiation-Matter Interactions, University of Blida) ;
  • A. Azbouche (Algiers Nuclear Research Centre) ;
  • B. Boumehdi (Draria Nuclear Research Centre) ;
  • S. Chegrouche (Draria Nuclear Research Centre) ;
  • N. Atamna (SOMIPHOS Mining Company) ;
  • R. Khelifi (Laboratory of Theoretical Physics and Radiation-Matter Interactions, University of Blida)
  • 투고 : 2022.02.24
  • 심사 : 2022.06.07
  • 발행 : 2022.11.25

초록

Since the implementation of the phosphate project in Bled El-Hadba (BEH) deposit, western region of Tébessa, no detailed study has been conducted to assess the natural radioactivity distribution and the associated radiological risk parameter for this open-pit mine. For the sake of determining a credible premining reference database for the region of interest, 21 samples were collected from different geological layers of the above-mentioned deposit. Gamma Spectrometry was applied for measuring radioactivity using a high resolution HPGe semiconductor detector. The obtained activity results have shown a significant broad variation in the radioactive contents for the different phosphate samples. The total average concentrations (in Bq·kg-1) for 226Ra, 238U, 235U, 232Th and 40K computed for the different type of phosphate layers were found to be 570 ± 169, 788 ± 280, 52 ± 18, 66 ± 6 and 81 ± 18 respectively. The mean activity concentrations of the measured radionuclides were compared to other regional and worldwide deposits. The ratios between the detected radioisotopes have been calculated for spatial distribution of natural radionuclides in the study area. Based on the aforementioned activity concentrations, the corresponding radiation hazard parameters were assessed. Correlations between the obtained parameters were drawn and a multivariate statistical analysis (Pearson Correlation, Cluster and Factor analysis) was carried out in order to identify the existing relationships.

키워드

과제정보

The authors are thankful to the director and staff of the Algerian Mining Company (SOMIPHOS), for their help. We gratefully acknowledge our team members for their assistance and cooperation in the laboratory work.

참고문헌

  1. M. Taha, H. Tulsidas, Application of UNFC to phosphate rock-uranium resources: a case study of the el-sebaeya projects, Nile valley, Egypt, in: Application of the United Nations Framework Classification for Resources: Case Studies, United Nations, 2020, pp. 18-28, https://doi.org/10.18356/ae5e7da5-en.
  2. H. Rogner, R.F. Aguilera, R. Bertani, C. Bhattacharya, M.B. Dusseault, L. Gagnon, V. Yakushev, Energy resources and potentials, in: Global Energy Assessment: Toward a Sustainable Future, Cambridge University Press, Cambridge, 2012, pp. 425-512, https://doi.org/10.1017/CBO9780511793677.013.
  3. A.E. Ulrich, E. Schnug, H.M. Prasser, E. Frossard, Uranium endowments in phosphate rock, Science of the total environment 478 (2014) 226-234, https://doi.org/10.1016/j.scitotenv.2014.01.069.
  4. D. Boumala, C. Mavon, A. Belafrites, A. Tedjani, J.E. Groetz, Evaluation of radionuclide concentrations and external gamma radiation levels in phosphate ores and fertilizers commonly used in Algeria, Journal of Radioanalytical and Nuclear Chemistry 317 (1) (2018) 501-510, https://doi.org/10.1007/s10967-018-5871-8.
  5. N. Benabdeslam, N. Bouzidi, F. Atmani, R. Boucif, A. Sakhri, The effect of the parameters of the grinding on the characteristics of the deposit phosphate ore of Kef Es Sennoun, Djebel onk-tebessa, Algeria, International Journal of Materials and Metallurgical Engineering 12 (7) (2018) 319-326, https://doi.org/10.5281/zenodo.1317342.
  6. H. Mezghache, A. Toubal, T. Bouima, Typology of phosphate ores in deposits of the Djebel Onk mining basin (eastern Algeria), Phosphorus Research Bulletin 15 (2004) 5-20, https://doi.org/10.3363/prb1992.15.0_5.
  7. M. Dass Amiour, H. Mezghache, B. Elouadi, The use of three physico-chemical methods in the study of the organic matter associated with the sedimentary phosphorites in Djebel Onk Basin, Algeria, Arabian Journal of Geosciences 6 (2) (2013) 309-319, https://doi.org/10.1007/s12517-011-0381-9.
  8. S. Chinnaesakki, S. Bara, S. Sartandel, R. Tripathi, V. Puranik, Performance of HPGe gamma spectrometry system for the measurement of low level radioactivity, Journal of Radioanalytical and Nuclear Chemistry 294 (1) (2012) 143-147, https://doi.org/10.1007/s10967-011-1607-8.
  9. IAEA, Radiation Protection and Management of NORM Residues in the Phosphate Industry, Safety Reports Series N°78., Vienna, 2013.
  10. B. Zohuri, Nuclear fuel cycle and decommissioning, in: Nuclear Reactor Technology Development and Utilization, Woodhead Publishing, 2020, pp. 61-120, https://doi.org/10.1016/B978-0-12-818483-7.00002-0.
  11. A. El-Taher, S. Makhluf, Natural Radioactivity Levels in Phosphate Fertilizer and its Environmental Implications in Assuit Governorate, 2010. Upper Egypt.
  12. C. Lakehal, M. Ramdhane, A. Boucenna, Natural radionuclide concentrations in two phosphate ores of east Algeria, Journal of environmental radioactivity 101 (5) (2010) 377-379, https://doi.org/10.1016/j.jenvrad.2010.02.008.
  13. Y. Sui, R. Ding, H. Wang, A novel approach for occupational health and safety and environment risk assessment for nuclear power plant construction project, Journal of Cleaner Production 258 (2020), https://doi.org/10.1016/j.jclepro.2020.120945, 120945.
  14. A.S. Rood, H.A. Grogan, H.J. Mohler, J.R. Rocco, E.A. Caffrey, C. Mangini, J. Cartwright, T. Matthews, C. Shaw, M.E. Packard, J.E. Till, Use of routine environmental monitoring data to establish a dose-based compliance system for a low-level radioactive waste disposal site, Health Physics 118 (1) (2020) 1-17, https://doi.org/10.1097/hp.0000000000001116.
  15. J.B. Neris, D.M.M. Olivares, C.S. Santana, P.C. Emenike, F.G. Velasco, S.F.R. Andrade, C.M. Paranhos, HERisk, An improved spatio-temporal human health risks assessment software, Science of the Total Environment 772 (2021), 145044, https://doi.org/10.1016/j.scitotenv.2021.145044.
  16. A. Bollhofer, A. Beraldo, K. Pfitzner, A. Esparon, C. Doering, Determining a premining radiological baseline from historic airborne gamma surveys: a case study, Science of the total environment 468 (2014) 764-773, https://doi.org/10.1016/j.scitotenv.2013.09.001.
  17. M. Tufail, M. Asghar, Hazard of NORM from phosphorite of Pakistan, Journal of Hazardous Materials 176 (1-3) (2010) 426-433, https://doi.org/10.1016/j.jhazmat.2009.11.047.
  18. K.F. Al-Shboul, A.E. Alali, A.W. Al-Shurafat, A.A. Arrasheed, S.A. Al-Shboul, Spatial evaluation of radionuclide concentrations and the associated radiation hazards using the Kriging method, Journal of Radioanalytical and Nuclear Chemistry 317 (3) (2018) 1285-1297, https://doi.org/10.1007/s10967-018-6015-x.
  19. R. Kechiched, R. Laouar, O. Bruguier, S. Salmi-Laouar, L. Kocsis, D. Bosch, H. Larit, Glauconite-bearing sedimentary phosphorites from the Tebessa region (eastern Algeria): evidence of REE enrichment and geochemical constraints on their origin, Journal of African Earth Sciences 145 (2018) 190-200, https://doi.org/10.1016/j.jafrearsci.2018.05.018.
  20. N. Bezzi, D. Merabet, N. Benabdeslem, H. Arkoub, Caracterisation physicochimique du minerai de phosphate de Bled El-Hadbad-Tebessa, 2001, Annales de Chimie Science des Materiaux 26 (6) (2001) 5 - 23 (No longer published by Elsevier).
  21. R. Kechiched, R. Laouar, O. Bruguier, S. Laouar-Salmi, O. Ameur-Zaimeche, A. Foufou, Preliminary data of REE in Algerian phosphorites: a comparative study and paleo-redox insights, Procedia Engineering 138 (2016) 19-29, https://doi.org/10.1016/j.proeng.2016.02.048.
  22. L. Visse, Genesis of the southeasterly AlgerianeTunisian phosphatic deposits, XIX International Geological Congress set 1 (27) (1952) 60. Algiers, Algeria.
  23. I. Galfati, A.B. Sassi, A. Zaier, J.L. Bouchardon, E. Bilal, J.L. Joron, S. Sassi, Geochemistry and mineralogy of paleocene-eocene oum el khecheb phosphorites (Gafsa-Metlaoui basin) Tunisia, Geochemical Journal 44 (3) (2010) 189-210, https://doi.org/10.2343/geochemj.1.0062.
  24. N. Bezzi, T. Aifa, D. Merabet, J.Y. Pivan, Magnetic properties of the Bled ElHadba phosphate-bearing formation (Djebel Onk, Algeria): consequences of the enrichment of the phosphate ore deposit, Journal of African Earth Sciences 50 (2-4) (2008) 255-267, https://doi.org/10.1016/j.jafrearsci.2007.09.019.
  25. R. Rebbah, J. Duarte, O. Djezairi, M. Fredj, J.S. Baptista, A tunnel under an in-pit mine waste dump to improve environmental and landscape recovery of the site, Minerals 11 (6) (2021) 566, https://doi.org/10.3390/min11060566.
  26. A. Azbouche, M. Belamri, T. Tchakoua, Study of the germanium dead layer influence on HP (Ge) detector efficiency by Monte Carlo simulation, Radiation Detection Technology and Methods 2 (2) (2018) 1-6, https://doi.org/10.1007/s41605-018-0074-y.
  27. Canberra report data sheet, Detector lead shields, model 747 and 747E, Canberra Industries (2008) 2-4. https://fr.scribd.com/document/49089077/747.
  28. A. Azbouche, M. Belgaid, H. Mazrou, Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples, Journal of environmental radioactivity 146 (2015) 119-124. https://doi.org/10.1016/j.jenvrad.2015.04.015
  29. UNSCEAR Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations, New York, 2000.
  30. M. Akpanowo, I. Umaru, S. Iyakwari, E.O. Joshua, S. Yusuf, G.B. Ekong, Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria, Scientific African 10 (2020), e00561, https://doi.org/10.1016/j.sciaf.2020.e00561.
  31. R. Ravisankar, K. Vanasundari, A. Chandrasekaran, A. Rajalakshmi, M. Suganya, P. Vijayagopal, V. Meenakshisundaram, Measurement of natural radioactivity in building materials of Namakkal, Tamil Nadu, India using gamma-ray spectrometry, Applied Radiation and Isotopes 70 (4) (2012) 699-704, https://doi.org/10.1016/j.apradiso.2011.12.001.
  32. UNSCEAR Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effect of Atomic Radiation, United Nations, New York, 2008.
  33. I. Gaafar, A. El-Shershaby, I. Zeidan, L.S. El-Ahll, Natural radioactivity and radiation hazard assessment of phosphate mining, Quseir-Safaga area, Central Eastern Desert, Egypt, NRIAG Journal of Astronomy and Geophysics 5 (1) (2016) 160-172, https://doi.org/10.1016/j.nrjag.2016.02.002.
  34. M.S. Rahman, A. Begum, A. Hoque, R.K. Khan, M.M. Siraz, Assessment of whole-body occupational radiation exposure in industrial radiography practices in Bangladesh during 2010-2014, Brazilian Journal of Radiation Sciences 4 (2) (2016), https://doi.org/10.15392/bjrs.v4i2.187.
  35. S.M. El-Bahi, A. Sroor, G.Y. Mohamed, N.S. El-Gendy, Radiological impact of natural radioactivity in Egyptian phosphate rocks, phosphogypsum and phosphate fertilizers, Applied Radiation and Isotopes 123 (2017) 121-127, https://doi.org/10.1016/j.apradiso.2017.02.031.
  36. N. Petoussi-Henss, W.E. Bolch, K.F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Zankl, Conversion coefficients for radiological protection quantities for external radiation exposures, Annals of the ICRP 40 (2-5) (2010) 1-257, https://doi.org/10.1016/j.icrp.2011.10.001.
  37. N.K. Ahmed, A.G.M. El-Arabi, Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt, Journal of environmental radioactivity 84 (1) (2005) 51-64, https://doi.org/10.1016/j.jenvrad.2005.04.007.
  38. P.S. Hameed, G.S. Pillai, R. Mathiyarasu, A study on the impact of phosphate fertilizers on the radioactivity profile of cultivated soils in Srirangam (Tamil Nadu, India), Journal of Radiation Research and Applied Sciences 7 (4) (2014) 463-471, https://doi.org/10.1016/j.jrras.2014.08.011.
  39. M. Azouazi, Y. Ouahidi, S. Fakhi, Y. Andres, J.C. Abbe, M. Benmansour, Natural radioactivity in phosphates, phosphogypsum and natural waters in Morocco, Journal of Environmental Radioactivity 54 (2) (2001) 231-242, https://doi.org/10.1016/S0265-931X(00)00153-3.
  40. P.O. Ogunleye, M.C. Mayaki, I.Y. Amapu, Radioactivity and heavy metal composition of Nigerian phosphate rocks: possible environmental implications, Journal of environmental radioactivity 62 (1) (2002) 39-48, https://doi.org/10.1016/S0265-931X(01)00149-7.
  41. A. Aksoy, M. Ahmed, W. Matter, Z. El-Naggar, Gamma-ray spectroscopic and PIXE analysis of selected samples from the phosphorite deposits of Northwestern Saudi Arabia, Journal of radioanalytical and nuclear chemistry 253 (3) (2002) 517-521, https://doi.org/10.1023/a:1020450310197.
  42. T. Akyuz, S. Akyuz, A. Varinlioglu, A. Kose, Radioactivity of phosphate ores from Karatas-Mazidag phosphate deposit of Turkey, Journal of Radioanalytical and Nuclear Chemistry 243 (3) (2000) 715-718, https://doi.org/10.1023/A:1010678521556.
  43. A.K. Sam, E. Holm, The natural radioactivity in phosphate deposits from Sudan, Science of the total environment 162 (2-3) (1995) 173-178, https://doi.org/10.1016/0048-9697(95)04452-7.
  44. A. Ghadeer, A. Ibrahim, M.S. Al-Masri, Geochemistry of uranium and thorium in phosphate deposits at the Syrian coastal area (Al-Haffah and Al-Qaradaha) and their environmental impacts, Environmental Geochemistry and Health 41 (5) (2019) 1861-1873, https://doi.org/10.1007/s10653-018-0221-x.
  45. J.A. D Santos Junior, R.D.S. Amaral, J.D. Bezerra, K.F.R. Damascena, C.M. Silva, J.V.M.D. Oliveira, R.C.B. Bispo, E.A. Rocha, 232 Th/238 U in a uranium mobility estimate in an agricultural area in the municipality of Pedra-PernambucoBrazil, in: International Nuclear Atlantic Conference, 2011. Brazil, October 24-28.
  46. Z.H. Fernandez, J.A.D. Santos Junior, R.D.S. Amaral, J.M.D.N. Santos, K.F.R. Damascena, N.V.D.S. Medeiros, A.A.D. Silva, Study of the uranium availability through the research method Th/U, in: International Nuclear Atlantic Conference, 2015. Brazil, October 4-9.
  47. N.G. Grozeva, J. Radwan, C. Beaucaire, M. Descostes, Reactive transport modeling of U and Ra mobility in roll-front uranium deposits: parameters influencing 226Ra/238U disequilibria, Journal of Geochemical Exploration 236 (2022) 106961, https://doi.org/10.1016/j.gexplo.2022.106961.
  48. M. Condomines, O. Loubeau, P. Patrier, Recent mobilization of U-series radionuclides in the bernardan U deposit (French massif central), Chemical Geology 244 (1-2) (2007) 304-315, https://doi.org/10.1016/j.chemgeo.2007.06.020.
  49. M. Sattouf, Identifying the Origin of Rock Phosphates and Phosphorus Fertilisers using Isotope Ratio Techniques and Heavy Metal Patterns, doctoral dissertation, Braunschweig Techn, 2007, https://doi.org/10.24355/dbbs.084-200709180200-0.
  50. S.A. Onjefu, S.H. Taole, N.A. Kgabi, C. Grant, J. Antoine, Assessment of natural radionuclide distribution in shore sediment samples collected from the North Dune beach, Henties Bay, Namibia, Journal of radiation research and applied sciences 10 (4) (2017) 301-306, https://doi.org/10.1016/j.jrras.2017.07.003.
  51. M. SureshGandhi, R. Ravisankar, A. Rajalakshmi, S. Sivakumar, A. Chandrasekaran, D.P. Anand, Measurements of natural gamma radiation in beach sediments of north east coast of Tamilnadu, India by gamma ray spectrometry with multivariate statistical approach, Journal of Radiation Research and Applied Sciences 7 (1) (2014) 7-17, https://doi.org/10.1016/j.jrras.2013.11.001.
  52. H. Loerts, W. Lowie, B. Seton, Essential Statistics for Applied Linguistics: Using R or JASP, second ed., Red Globe Press, London, 2020.
  53. J. Love, R. Selker, M. Marsman, T. Jamil, D. Dropmann, J. Verhagen, E.J. Wagenmakers JASP, Graphical statistical software for common statistical designs, Journal of Statistical Software 88 (2019) 1-17.
  54. M.J. Blanca, J. Arnau, D. Lopez-Montiel, R. Bono, R. Bendayan, Skewness and kurtosis in real data samples, Methodology 9 (2013) 78-84, https://doi.org/10.1027/1614-2241/a000057.
  55. W.X. Liu, X.D. Li, Z.G. Shen, D.C. Wang, O.W.H. Wai, Y.S. Li, Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary, Environmental pollution 121 (3) (2003) 377-388. https://doi.org/10.1016/S0269-7491(02)00234-8
  56. J.C. Davis, Contour mapping and SURFACE II, Science 237 (4815) (1987) 669-672, https://doi.org/10.1126/science.237.4815.669.
  57. G. Bouhila, A. Azbouche, F. Benrachi, M. Belamri, Natural radioactivity levels and evaluation of radiological hazards from Beni Haroun dam sediment samples, northeast Algeria, Environmental Earth Sciences 76 (20) (2017) 1-8, https://doi.org/10.1007/s12665-017-7061-3.
  58. A.M.A. Adam, M.A.H. Eltayeb, Multivariate statistical analysis of radioactive variables in two phosphate ores from Sudan, Journal of environmental radioactivity 107 (2012) 23-43, https://doi.org/10.1016/j.jenvrad.2011.11.021.
  59. M.M. Makweba, E. Holm, The natural radioactivity of the rock phosphates, phosphatic products and their environmental implications, Science of the Total Environment 133 (1-2) (1993) 99-110, https://doi.org/10.1016/0048-9697(93)90115-M.
  60. A. Shahrokhi, M. Adelikhah, S. Chalupnik, T. Kovacs, Multivariate statistical approach on distribution of natural and anthropogenic radionuclides and associated radiation indices along the north-western coastline of Aegean Sea, Greece, Marine Pollution Bulletin 163 (2021), 112009, https://doi.org/10.1016/j.marpolbul.2021.112009.