DOI QR코드

DOI QR Code

Insect, potential source of animal feed

동물사료로서의 곤충의 잠재적 가치

  • Received : 2022.04.14
  • Accepted : 2022.05.30
  • Published : 2022.06.30

Abstract

Because of human population growth, longer lifespans, and climate change, there is growing concern around world to produce enough food and feed. Insects are regarded as an alternative with high potential because the production of insects demands limited amounts of water and land, and they can add value to low-value by-products. Insects have high levels of crude protein, lipids and minerals. The relative amount of protein can vary substantially, with crude protein content ranging from 23% to 76%, depending on insect species. Their amino acid composition is good and protein digestibility is high. Insect to be a significant sustainable source as a replacement of ingredients such as soya or fishmeal in the feeds of terrestrial livestock or fish. This review provides an overview of nutritional value of insect in animal feed and challenges required to develop a sustainable, safe, and affordable insect farming industry.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: PJ0150922022)의 지원에 의해 이루어졌으며, 이에 감사드립니다.

References

  1. Alexandratos N, Bruinsma J, Bodeker G, Schmidhuber J, Broca S, Shetty P, Ottaviani MG. World agriculture: towards 2030/2050, Interim report. Rome: Global Perspective Studies Unit, FAO. (2006)
  2. All About Feed. Available online: https://www.allaboutfeed.net/New-Proteins/Articles/2016/12/Insectmeal-allowance-expected-in-2020-68992E/ (accessed on 17 February 2019).
  3. Allegretti G, Talamini E, Schmidt V, Bogorni PC, Ortega E. Insect as feed: An emergy assessment of insect meal as a sustainable protein source for the Brazilian poultry industry. J. Clean. Prod. 171: 403-412 (2018) https://doi.org/10.1016/j.jclepro.2017.09.244
  4. Altmann BA, Neumann C, Rothstein S, Liebert F, Morlein D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 153: 26-34 (2019) https://doi.org/10.1016/j.meatsci.2019.03.001
  5. Barker D, Fitzpatrick MP, Dierenfeld ES. Nutrient composition of selected whole invertebrates. Zoo Biol. Published in affiliation with the American Zoo and Aquarium Association, 17(2): 123-134 (1998) https://doi.org/10.1002/(SICI)1098-2361(1998)17:2<123::AID-ZOO7>3.0.CO;2-B
  6. Barroso FG, de Haro C, Sanchez-Muros MJ, Venegas E, Martinez-Sanchez A, Perez-Banon C. The potential of various insect species for use as food for fish. Aquaculture, 422: 193-201 (2014) https://doi.org/10.1016/j.aquaculture.2013.12.024
  7. Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Waagbo R, Krogdahl A, Lock EJ. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609-619 (2019) https://doi.org/10.1016/j.aquaculture.2018.12.032
  8. Belghit I, Liland NS, Waagbo R, Biancarosa I, Pelusio N, Li Y, Krogdahl A, Lock EJ. Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72-81 (2018) https://doi.org/10.1016/j.aquaculture.2018.03.016
  9. Belluco S, Losasso C, Maggioletti M, Alonzi CC, Paoletti MG, Ricci A. Edible insects in a food safety and nutritional perspective: a critical review. Compr. Rev. Food Sci. Food Saf. 12(3): 296-313 (2013) https://doi.org/10.1111/1541-4337.12014
  10. Biasato I, De Marco M, Rotolo L, Renna M, Lussiana C, Dabbou S, Capucchio MT, Biasibetti E, Costa P, Gai F, Pozzo L, Dezzutto D, Bergagna S, Martinez S, Tarantola M, Gasco L, Schiavone A. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutri. 100(6): 1104-1112 (2016). https://doi.org/10.1111/jpn.12487
  11. Biasato I, Gasco L, De Marco M, Renna M, Rotolo L, Dabbou S, Capucchio MT, Biasibetti E, Tarantola M, Sterpone L, Cavallarin L, Gai F, Pozzo L, Bergagna S, Dezzutto D, Zoccarato I, Schiavone A. Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: effects on growth performance, gut morphology, and histological findings. Poult. Sci. 97(2): 540-548 (2018) https://doi.org/10.3382/ps/pex308
  12. Biasato I, Renna M, Gai F, Dabbou S, Meneguz M, Perona G, Martinez S, Lajusticia ACB, Bergagna S, Sardi L, Capucchio MT, Bressan E, Dama A, Schiavone A, Gasco L. Partially defatted black soldier fly larva meal inclusion in piglet diets: effects on the growth performance, nutrient digestibility, blood profile, gut morphology and histological features. J. Anim. Sci. Biotechnol. 10(1): 1-11 (2019) https://doi.org/10.1186/s40104-018-0308-3
  13. Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia YA, Nizza A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 56(5): 569-575 (2015) https://doi.org/10.1080/00071668.2015.1080815
  14. De Marco M, Martinez S, Hernandez F, Madrid J, Gai F, Rotolo L, Belforti M, Bergero D, Katz H, Dabbou S, Kovitvadhi A, Zoccarato I, Gasco L, Schiavone A. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 209: 211-218 (2015) https://doi.org/10.1016/j.anifeedsci.2015.08.006
  15. Dossey AT, TatumJT, McGill WL. Modern insect-based food industry: current status, insect processing technology, and recommendations moving forward. In Insects as sustainable food ingredients. Academic Press. pp.113-152 (2016)
  16. EU Comm. Regul. 2015/2283. 2015. On novel foods, amending Regulation (EU) No. 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No. 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No. 1852/2001, Dec. 11. 2015 O.J. (L327) 1-22
  17. EU Comm. Regul. 2017/2469. 2017. Laying down administrative and scientific requirements for applications referred to in Article 10 of Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods, Dec. 30. 2017 O.J. (L351/64) 64-71
  18. Fasel NJ, Mene-Safrane L, Ruczynski I, Komar E, Christe P. Diet induced modifications of fatty-acid composition in mealworm larvae (Tenebrio molitor). J. Food Res. 6(5):22-31 (2017) https://doi.org/10.5539/jfr.v6n5p22
  19. Finke MD. Estimate of chitin in raw whole insects. Zoo Biol. 26(2): 105-115 (2007) https://doi.org/10.1002/zoo.20123
  20. Gasco L, Finke M, Van Huis A. Can diets containing insects promote animal health? J. Insects Food Feed, 4(1): 1-4 (2018) https://doi.org/10.3920/JIFF2018.x001
  21. Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. J. Insect Physiol. 52(6): 593-601 (2006) https://doi.org/10.1016/j.jinsphys.2006.02.007
  22. Hall HN, O'Neill HM, Scholey D, Burton E, Dickinson M, Fitches EC. Amino acid digestibility of larval meal (Musca domestica) for broiler chickens. Poult. Sci. 97(4): 1290-1297 (2018) https://doi.org/10.3382/ps/pex433
  23. Hawkey KJ, Lopez-Viso C, Brameld JM, Parr T, Salter AM. Insects: A Potential source of protein and other nutrients for feed and food. Annu. Rev. Anim. Biosci. 9: 333-354 (2021) https://doi.org/10.1146/annurev-animal-021419-083930
  24. Hussein M, Pillai VV, Goddard JM, Park HG, Kothapalli KS, Ross DA, Ketterings QM, Brenna JT, Milstein MB, Marquis H, Johnson PA, Nyrop JP, Selvaraj V. Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. PLoS One, 12(2), e0171708 (2017) https://doi.org/10.1371/journal.pone.0171708
  25. Hwangbo J, Hong EC, Jang A, Kang HK, Oh JS, Kim BW, Park BS. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 30(4): 609-614 (2009)
  26. Iaconisi V, Marono S, Parisi G, Gasco L, Genovese L, Maricchiolo G, Bovera F, Piccolo G. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476: 49-58 (2017) https://doi.org/10.1016/j.aquaculture.2017.04.007
  27. IPIFF. The European Insect Sector Today: Challenges, Opportunities and Regulatory Landscape. IPIFF Vision Paper on the Future of the Insect Sector Towards 2030 (2018, 2019)
  28. Janssen RH, Vincken JP, van den Broek LA, Fogliano V, Lakemond CM. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 65(11): 2275-2278. (2017) https://doi.org/10.1021/acs.jafc.7b00471
  29. Jin XH, Heo PS, Hong JS, Kim NJ, Kim YY. Supplementation of dried mealworm (Tenebrio molitor larva) on growth performance, nutrient digestibility and blood profiles in weaning pigs. Asian-Australas J. Anim. Sci. 29(7): 979-986 (2016) https://doi.org/10.5713/ajas.15.0535
  30. Kourimska L, Adamkova A. Nutritional and sensory quality of edible insects. NFSJ. 4: 22-26 (2016) https://doi.org/10.1016/j.nfs.2016.07.001
  31. Lahteenmaki-Uutela A, Grmelova N, Henault-Ethier L, Deschamps MH, Vandenberg GW, Zhao A, Zhang Y, Yang B, Nemane V. Insects as food and feed: laws of the European Union, United States, Canada, Mexico, Australia, and China. Eur. Food Feed Law Rev. 12, 22. (2017)
  32. Lock ER, Arsiwalla T, Waagbo R. Insect larvae meal as an alternative source of nutrients in the diet of A tlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 22(6): 1202-1213 (2016) https://doi.org/10.1111/anu.12343
  33. Magalhaes R, Sanchez-Lopez A, Leal RS, Martinez-Llorens S, Oliva-Teles A, Peres H. Black soldier fly (Hermetia illucens) prepupae meal as a fish meal replacement in diets for European seabass (Dicentrarchus labrax). Aquaculture, 476: 79-85 (2017) https://doi.org/10.1016/j.aquaculture.2017.04.021
  34. Makkar HPS, Tran G, Heuze V, Ankers P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197: 1-33 (2014) https://doi.org/10.1016/j.anifeedsci.2014.07.008
  35. McLeod A. World livestock 2011-livestock in food security. FAO (2011)
  36. Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, Renna M, Gasco L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food. Agric. 98(15): 5776-5784 (2018) https://doi.org/10.1002/jsfa.9127
  37. Newton L, Sheppard C, Watson DW, Burtle G, Dove R. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC, 17(2005), 18
  38. Oluokun JA. Upgrading the nutritive value of full-fat soyabeans meal for broiler production with either fishmeal or black solider fly larvae meal (Hermetia illucens). Niger. J. Anim. Sci. 3(2) (2000)
  39. Oonincx DG, De Boer IJ. Environmental impact of the production of mealworms as a protein source for humans-a life cycle assessment. PLoS One, 7(12), e51145. (2012) https://doi.org/10.1371/journal.pone.0051145
  40. Oonincx DGAB, Finke MD. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed, 7(5):639-659 (2021) https://doi.org/10.3920/JIFF2020.0050
  41. Park BK, Kim MM. Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11(12): 5152-5164 (2010) https://doi.org/10.3390/ijms11125152
  42. Piccolo G, Iaconisi V, Marono S, Gasco L, Loponte R, Nizza S, Bovera F, Parisi G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 226: 12-20 (2017) https://doi.org/10.1016/j.anifeedsci.2017.02.007
  43. Pieterse E, Erasmus SW, Uushona T, Hoffman LC. Black soldier fly (Hermetia illucens) pre-pupae meal as a dietary protein source for broiler production ensures a tasty chicken with standard meat quality for every pot. J. Sci. Food. Agric. 99(2): 893-903 (2019) https://doi.org/10.1002/jsfa.9261
  44. Pieterse E, Pretorius Q. Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical and broiler-based biological assays. Anim. Prod. Sci. 54(3): 347-355 (2014) https://doi.org/10.1071/AN12370
  45. Pretorius Q. The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production (Doctoral dissertation, Stellenbosch: Stellenbosch University) (2011)
  46. Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, De Guevara OL. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 10(2): 142-157 (1997) https://doi.org/10.1006/jfca.1997.0530
  47. Renna M, Schiavone A, Gai F, Dabbou S, Lussiana C, Malfatto V, Prearo M, Capucchio MT, Biasato I, Biasibetti E, De Marco M, Brugiapaglia A, Zoccarato I, Gasco L. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 8(1): 1-13 (2017) https://doi.org/10.1186/s40104-016-0130-8
  48. Schiavone A, Dabbou S, De Marco M, Cullere M, Biasato I, Biasibetti E, Capucchio MT, Bergagna S, Dezzutto D, Meneguz M, Gai F, Dalle Zotte D, Gasco L. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal, 12(10): 2032-2039 (2018) https://doi.org/10.1017/S1751731117003743
  49. Schiavone A, De Marco M, Martinez S, Dabbou S, Renna M, Madrid J, Hernandez F, Rotolo L, Costa P, Gai F, Gasco L. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 8(1): 1-9 (2017) https://doi.org/10.1186/s40104-016-0130-8
  50. Sealey WM, Gaylord TG, Barrows FT, Tomberlin JK, McGuire MA, Ross C, St-Hilaire S. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquacult. Soc. 42(1) : 34-45 (2011) https://doi.org/10.1111/j.1749-7345.2010.00441.x
  51. Secci G, Moniello G, Gasco L, Bovera F, Parisi G. Barbary partridge meat quality as affected by Hermetia illucens and Tenebrio molitor larva meals in feeds. Food Res. Int. 112: 291-298 (2018) https://doi.org/10.1016/j.foodres.2018.06.045
  52. Sogari G, Amato M, Biasato I, Chiesa S, Gasco L. The potential role of insects as feed: A multi-perspective review. Animals, 9(4): 119 (2019) https://doi.org/10.3390/ani9040119
  53. Speedy AW. Global production and consumption of animal source foods. J. Nutr. 133(11): 4048S-4053S (2003) https://doi.org/10.1093/jn/133.11.4048S
  54. Spranghers T, Michiels J, Vrancx J, Ovyn A, Eeckhout M, De Clercq P, De Smet S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 235: 33-42 (2018) https://doi.org/10.1016/j.anifeedsci.2017.08.012
  55. Tubin JSB, Paiano D, de Oliveira Hashimoto GS, Furtado WE, Martins ML, Durigon E, Emerenciano MGC. Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519: 734763 (2020) https://doi.org/10.1016/j.aquaculture.2019.734763
  56. Van Huis A, Oonincx DG. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 37(5): 1-14 (2017) https://doi.org/10.1007/s13593-016-0408-4
  57. Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. Edible insects: future prospects for food and feed security (No. 171). FAO (2013)
  58. Varotto Boccazzi I, Ottoboni M, Martin E, Comandatore F, Vallone L, Spranghers T, Eeckhout M, Mereghetti V, Pinotti L, Epis S. A survey of the mycobiota associated with larvae of the black soldier fly (Hermetia illucens) reared for feed production. PLoS One, 12(8), e0182533 (2017) https://doi.org/10.1371/journal.pone.0182533
  59. Veldkamp T, Van Duinkerken G, Van Huis A, Lakemond CMM, Ottevanger E, Bosch G, Van Boekel T. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study= Insecten als duurzame diervoedergrondstof in varkensen pluimveevoeders: een haalbaarheidsstudie (No. 638). Wageningen UR Livestock Research (2012)
  60. Wang D, Zhai SW, Zhang CX, Bai YY, An SH, Xu YN. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-australas. J. Anim. Sci. 18(5): 667-670 (2005) https://doi.org/10.5713/ajas.2005.667
  61. Wang D, Zhai SW, Zhang CX, Zhang Q, Chen H. Nutrition value of the Chinese grasshopper Acrida cinerea (Thunberg) for broilers. Anim. Feed Sci. Technol. 135(1-2): 66-74 (2007) https://doi.org/10.1016/j.anifeedsci.2006.05.013
  62. Wehberg G, Vaessen W, Nijland F, Berger T. Smart livestock farming: potential of digitalization for global meat supply (No. 11). Discussion Paper, Deloitte (2017)
  63. Williams JP, Williams JR, Kirabo A, Chester D, Peterson M. Nutrient content and health benefits of insects. In Insects as sustainable food ingredients. pp. 61-84. Academic Press (2016)
  64. Willett W, Rockstrom J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M, Clark M, Gordon LJ, Fanzo J, Hawkes C, Zurayk R, Rivera JA, De Vries W, Majele Sibanda L, Afshin A, Chaudhary A, Herrero M, Agustina R, Branca F, Lartey A, Fan S, Crona B, Fox E, Bignet V, Troell M, Lindahl T, Singh S, Cornell SE, Srinath Reddy K, Narain S, Nishtar S, Murray CJL. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet, 393(10170): 447-492 (2019) https://doi.org/10.1016/s0140-6736(18)31788-4
  65. Yoo JS, Cho KH, Hong JS, Jang HS, Chung YH, Kwon GT, Shin DG, Kim YY. Nutrient ileal digestibility evaluation of dried mealworm (Tenebrio molitor) larvae compared to three animal protein by-products in growing pigs. Asian-Australas J. Anim. Sci. 32(3): 387-394 (2019) https://doi.org/10.5713/ajas.18.0647