DOI QR코드

DOI QR Code

Analysis of the global gene expression profiles in genomic instability-induced cervical cancer cells

  • Oh, Jung-Min (Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University)
  • Received : 2022.05.19
  • Accepted : 2022.05.30
  • Published : 2022.06.30

Abstract

Preserving intact genetic material and delivering it to the next generation are the most significant tasks of living organisms. The integrity of DNA sequences is under constant threat from endogenous and exogenous factors. The accumulation of damaged or incompletely-repaired DNA can cause serious problems in cells, including cell death or cancer development. Various DNA damage detection systems and repair mechanisms have evolved at the cellular level. Although the mechanisms of these responses have been extensively studied, the global RNA expression profiles associated with genomic instability are not well-known. To detect global gene expression changes under different DNA damage and hypoxic conditions, we performed RNA-seq after treating human cervical cancer cells with ionizing radiation (IR), hydroxyurea, mitomycin C (MMC), or 1% O2 (hypoxia). Results showed that the expression of 184-1037 genes was altered by each stimulus. We found that the expression of 51 genes changed under IR, MMC, and hypoxia. These findings revealed damage-specific genes that varied differently according to each stimulus and common genes that are universally altered in genetic instability.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009;461:1071-8. doi: 10.1038/nature08467.
  2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74. doi: 10.1016/j.cell.2011.02.013.
  3. Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science 2002;297:547-51. doi: 10.1126/science.1074740.
  4. Smeenk G, van Attikum H. The chromatin response to DNA breaks: leaving a mark on genome integrity. Annu Rev Biochem 2013;82:55-80. doi: 10.1146/annurev-biochem061809-174504.
  5. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010;40:179-204. doi: 10.1016/j.molcel.2010.09.019.
  6. Friedberg EC, Aguilera A, Gellert M, Hanawalt PC, Hays JB, Lehmann AR, Lindahl T, Lowndes N, Sarasin A, Wood RD. DNA repair: from molecular mechanism to human disease. DNA Repair (Amst) 2006;5:986-96. doi: 10.1016/j.dnarep.2006.05.005.
  7. Oh JM, Myung K. Crosstalk between different DNA repair pathways for DNA double strand break repairs. Mutat Res Genet Toxicol Environ Mutagen 2022;873:503438. doi: 10.1016/j.mrgentox.2021.503438.
  8. Lee JH, Paull TT. Activation and regulation of ATM kinase activity in response to DNA double-strand breaks. Oncogene 2007;26:7741-8. doi: 10.1038/sj.onc.1210872.
  9. Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 2009;30:2-10. doi: 10.1093/carcin/bgn250.
  10. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol 2014;15:465-81. doi: 10.1038/nrm3822.
  11. Mahaney BL, Meek K, Lees-Miller SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009;417:639-50. doi: 10.1042/BJ20080413.
  12. Petermann E, Orta ML, Issaeva N, Schultz N, Helleday T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 2010;37:492-502. doi: 10.1016/j.molcel.2010.01.021.
  13. Dusre L, Covey JM, Collins C, Sinha BK. DNA damage, cytotoxicity and free radical formation by mitomycin C in human cells. Chem Biol Interact 1989;71:63-78. doi: 10.1016/0009-2797(89)90090-2.
  14. Kaplan AR, Glazer PM. Impact of hypoxia on DNA repair and genome integrity. Mutagenesis 2020;35:61-8. doi: 10.1093/mutage/gez019.
  15. Venters CC, Oh JM, Di C, So BR, Dreyfuss G. U1 snRNP telescripting: suppression of premature transcription termination in introns as a new layer of gene regulation. Cold Spring Harb Perspect Biol 2019;11:a032235. doi: 10.1101/cshperspect.a032235.
  16. Williamson L, Saponaro M, Boeing S, East P, Mitter R, Kantidakis T, Kelly GP, Lobley A, Walker J, Spencer-Dene B, Howell M, Stewart A, Svejstrup JQ. UV irradiation induces a noncoding RNA that functionally opposes the protein encoded by the same gene. Cell 2017;168:843-55.e13. doi: 10.1016/j.cell.2017.01.019.
  17. Oh JM, Di C, Venters CC, Guo J, Arai C, So BR, Pinto AM, Zhang Z, Wan L, Younis I, Dreyfuss G. U1 snRNP telescripting regulates a size-function-stratified human genome. Nat Struct Mol Biol 2017;24:993-9. doi: 10.1038/nsmb.3473.
  18. Oh JM, Venters CC, Di C, Pinto AM, Wan L, Younis I, Cai Z, Arai C, So BR, Duan J, Dreyfuss G. U1 snRNP regulates cancer cell migration and invasion in vitro. Nat Commun 2020;11:1. doi: 10.1038/s41467-019-13993-7.
  19. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-78. doi: 10.1038/nprot.2012.016. Erratum in: Nat Protoc 2014;9:2513.
  20. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57. doi: 10.1038/nprot.2008.211.
  21. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022. doi: 10.1093/nar/gkac194.
  22. Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 2011;6:e21800. doi: 10.1371/journal.pone.0021800.
  23. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS. Transcription factor HIF1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 2001;21:3436-44. doi: 10.1128/MCB.21.10.3436-3444.2001.
  24. Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2011;2:1117-33. doi: 10.1177/1947601911423654.
  25. Rezatabar S, Karimian A, Rameshknia V, Parsian H, Majidinia M, Kopi TA, Bishayee A, Sadeghinia A, Yousefi M, Monirialamdari M, Yousefi B. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol 2019. doi: 10.1002/jcp.28334.
  26. Wang JQ, Chen Q, Wang X, Wang QC, Wang Y, Cheng HP, Guo C, Sun Q, Chen Q, Tang TS. Dysregulation of mitochondrial calcium signaling and superoxide flashes cause mitochondrial genomic DNA damage in Huntington disease. J Biol Chem 2013;288:3070-84. doi: 10.1074/jbc.M112.407726.
  27. Miller BA, Zhang W. TRP channels as mediators of oxidative stress. Adv Exp Med Biol 2011;704:531-44. doi: 10.1007/978-94-007-0265-3_29.