DOI QR코드

DOI QR Code

High-Velocity Impact Behavior Characteristics of Aluminum 6061

알루미늄 6061의 고속 충격 거동 특성 연구

  • Received : 2022.04.25
  • Accepted : 2022.06.01
  • Published : 2022.07.01

Abstract

This paper studied the high-velocity impact behavior characteristics of metal materials by crosschecking the high-velocity impact analysis with the high-velocity impact experiment results of aluminul 6061. The coefficients of the Huh-Kang material model and the Johnson-Cook fracture model were calculated through quasi-static using MTS-810 and dynamic experimenting using the Hopkinson bar equipment for high-velocity impact analysis. The penetration velocity and shape were predicted through high-velocity impact analysis using the LS-DYNA. The resultes were compared with the experiment results using a high-velocit experiment equipment. It is intended to be used the containment evaluation research for aircraft gas turbine engine blade.

본 논문은 알루미늄 6061의 고속 충격 해석과 고속 충격 시험 결과를 비교 검증하여 금속 재료의 고속 충격에 의한 거동 특성을 연구하였다. 고속 충격 해석을 위해 만능재료시험기를 이용한 준정적 시험과 Hopkinson bar를 이용한 동적 시험을 통해 Huh-Kang 모델과 Johnson-Cook 파손 모델의 계수를 구했다. LS-DYNA 프로그램 해석을 이용하여 관통 속도와 형상을 결과로 예측했고 고속 충격 시험기를 이용한 시험 결과와 비교하였다. 이를 바탕으로 항공기 가스터빈 엔진 블레이드 컨테인먼트 평가 연구에 적용하고자 한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 주관 항공우주부품 기술개발사업(20002700)의 지원을 받아 수행되었습니다.

References

  1. Huh, H., Ahn, K., Lim, J. H., Kim, H. W. and Park, L. J., "Evaluation of dynamic hardening models for BCC, FCC, and HCP metals at a wide range of strain rates," Journal of Materials Processing Technology, Vol. 214, 2014, pp. 1326~1340. https://doi.org/10.1016/j.jmatprotec.2014.02.004
  2. Johnson, G. R. and Cook, W. H., "A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures," Proceedings 7th International Symposium on Ballistics, April 1983, pp. 541~547.
  3. Sasso, M., Newaz, G. and Amodio, D., "Material characterization at high strain rate by Hopkinson bar tests and finite element optimization," Materials Science and Engineering, Vol. 487, 2008, pp. 289~300. https://doi.org/10.1016/j.msea.2007.10.042
  4. Zukas, J. A., "High velocity impact dynamics," Wiley-Interscience, November 1990.
  5. Lee, O. S., Choi, H. and Kim, H., "High-temperature dynamic deformation of aluminum alloys using SHPB," Journal of Mechanical Science and Technology, Vol. 25, No. 1, 2011, pp. 143~148. https://doi.org/10.1007/s12206-010-1106-9
  6. Banerjee, A., Dhar, S., Acharyya, S., Datta, D. and Nayak, N., "Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel," Materials Science and Engineering, Vol. 640, 2015, pp. 200~209. https://doi.org/10.1016/j.msea.2015.05.073
  7. Wang, X. and Shi, J., "Validation of Johnson-Cook plasticity and damage model using impact experiment," International Journal of Impact Engineering, Vol. 60, 2013, pp. 67~75. https://doi.org/10.1016/j.ijimpeng.2013.04.010
  8. Kay, G., "Failure modeling of titanium 6AI-4V and aluminum 2024-T3 with the Johnson-Cook material model," Office of Aviation Research, Federal Aviation Administration, September 2003.
  9. Buzyurkin, A., Gladky, I. L. and Kraus, E. I., "Determination and verification of Johnson-Cook model parameters at high-speed deformation of titanium alloys," Aerospace science and technology, Vol. 45, 2015, pp. 121~127. https://doi.org/10.1016/j.ast.2015.05.001
  10. He, Q., Xie, Z., Xuan, H., Liu, L. and Hong, W., "Multi-blade effects on aero-engine blade containment," Aerospace Science and Technology, Vol. 49, 2016, pp. 101~111. https://doi.org/10.1016/j.ast.2015.11.037
  11. Kang, W. J., Cho, S. S., Huh, H. and Chung, D. T., "Modified Johnson-Cook model for vehicle body crashworthiness simulation," International Journal of Vehicle Design 21, Vol. 4, No. 5, 1999, pp. 424~435.
  12. Schwer, L., "Optional Strain-rate forms for the Johnson Cook Constitutive Model and the Role of the parameter ℇ0," 6th European LS-DYNA Users' Conference, 2007.
  13. ISO 26203-2, "Metallic materials - Tensile testing at high strain rates -Part 2 : Servohydraulic and other test systems," International Standard, 2011.
  14. Bao, Y., "Prediction of ductile crack formation in uncracked bodies," Massachusetts Institute of Technology, 2003.
  15. Vander Klok, A. J., "Experimental impact testing and analysis of composite fan cases," Michigan State University, 2016.
  16. Phadnis, V. A. and Silberschmidt, V. V., "Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel," EPJ Web of Conferences, Vol. 94, 2015.