DOI QR코드

DOI QR Code

Development of HRM Markers for Discrimination of Pyogo (Lentinula edodes) Cultivars Sanjo 701 and Chamaram

  • Suyun Moon (Department of Biological Sciences and Biotechnology, Chungbuk National University) ;
  • Hojin Ryu (Department of Biological Sciences and Biotechnology, Chungbuk National University)
  • Received : 2022.06.17
  • Accepted : 2022.08.19
  • Published : 2022.09.30

Abstract

Pyogo (Shiitake, Lentinula edodes) is one of the most important edible mushrooms because of its outstanding nutritive and medicinal value. In the registration and protection procedure for newly developed mushroom cultivars, the application of molecular markers that can supplement the morphological characteristic-based distinction has been strongly requested. Sanjo 701 and Chamaram, newly developed at the Federation Forest Mushroom Research Center of Korea, have been characterized as innovative cultivars suitable for customer demands because of their high yields and cultivation rates. However, no technical tools can protect the rights to these important cultivars. In this study, using comparative genomic information from 23 commercially available pyogo cultivars, we identified single nucleotide polymorphisms (SNPs) that accurately differentiated Sanjo701 and Chamaram from the other cultivars. We also developed high-resolution melting analysis (HRM)-based SNP markers that discriminate among the tested 23 pyogo cultivars. The developed SNP markers can be utilized for rapid, accurate identification of pyogo cultivars with low genetic diversity and to prevent cultivar contamination caused by illegally distributed inocula. In addition, these markers can serve as a crucial scientific basis for securing the right to conserve new cultivars in international markets.

Keywords

Acknowledgement

This research was supported by the Chungbuk National University Korea National University Development Project (2022).

References

  1. Lee KW, Jeon JO, Kim MJ, Kim IJ, Jang MJ, Park HS. Effects of difference in medium composition on the growth of Lentinula edodes. J Mushrooms 2018;16:267-71. 
  2. Bisen P, Baghel RK, Sanodiya BS, Thakur GS, Prasad G. Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem 2010;17:2419-30.  https://doi.org/10.2174/092986710791698495
  3. Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. A review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Food Nutr Sci 2014;5:12. 
  4. Wasser SP. Shiitake (Lentinus edodes). New York: Marcel Dekker Inc.; 2004. p. 653-64. 
  5. Mata G, Gaitan-Hernandez R. Cultivation of the edible mushroom Lentinula edodes (Shiitake) in pasteurized wheat straw-alternative use of geothermal energy in Mexico. Eng Life Sci 2004;4:363-7.  https://doi.org/10.1002/elsc.200420042
  6. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. Hoboken: John Wiley & Sons Ltd.; 2017. p. 5-13. 
  7. Horticulture Business Division. Minister of Agriculture Food and Rural Affairs. 2019 The production record of a special crop. Sejong: Minister of Agriculture, Food and Rural Affairs; 2020. p. 64-7. 
  8. Jang YS, Kwon YR, Kim TH. Prospect and status of plant variety protection (PVP) of forest-sector in Korea. Korean J Breed Sci 2020;52:31-9.  https://doi.org/10.9787/KJBS.2020.52.S.31
  9. Nguyen NN, Kim M, Jung JK, Shim EJ, Chung SM, Park Y, Lee GP, Sim SC. Genome-wide SNP discovery and core marker sets for assessment of genetic variations in cultivated pumpkin (Cucurbita spp.). Hortic Res 2020;7:121. 
  10. Bonow S, Von Pinho EV, Vieira MG, Vosman B. Microsatellite markers in and around rice genes: applications in variety identification and DUS testing. Crop Sci 2009;49:880-6.  https://doi.org/10.2135/cropsci2008.06.0380
  11. Jamali SH, Cockram J, Hickey LT. Insights into deployment of DNA markers in plant variety protection and registration. Theor Appl Genet 2019;132:1911-29.  https://doi.org/10.1007/s00122-019-03348-7
  12. Hong JH, Chae CW, Choi KJ, Kwon YS. A database of simple sequence repeat (SSR) marker-based DNA profiles of citrus and related cultivars and germplasm. Korean J Hortic Sci Technol 2016;34:142-53. 
  13. International Union for the Protection of New Varieties of Plants (UPOV). Guidelines for DNA-Profiling: Molecular Marker Selection and Database Construction ("BMT Guideline") [Internet]. Geneva: UPOV; 2010 [cited 2022 Aug 13]. Available from https://www.upov.int/edocs/infdocs/en/upov_inf_17_1.pdf. 
  14. Cheng A, Chai HH, Ho WK, Bamba ASA, Feldman A, Kendabie P, Halim RA, Tanzi A, Mayes S, Massawe F. Molecular marker technology for genetic improvement of underutilised crops. In: Abdullah SNA, Chai-Ling H, Wagstaff C, editors. Crop Improvement: Sustainability Through Leading-Edge Technology. Cham: Springer International Publishing; 2017. p. 47-70. 
  15. Schlotterer C. The evolution of molecular markers-just a matter of fashion? Nat Rev Genet 2004;5:63-9.  https://doi.org/10.1038/nrg1249
  16. Trick M, Long Y, Meng J, Bancroft I. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 2009;7:334-46.  https://doi.org/10.1111/j.1467-7652.2008.00396.x
  17. Zhang S, Li B, Chen Y, Shaibu AS, Zheng H, Sun J. Molecular-assisted distinctness and uniformity testing using SLAF-sequencing approach in soybean. Genes 2020;11:175. 
  18. Zhang J, Yang J, Zhang L, Luo J, Zhao H, Zhang J, Wen C. A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Sci Rep 2020;10:1-11.  https://doi.org/10.1038/s41598-019-56847-4
  19. Herrmann MG, Durtschi JD, Wittwer CT, Voelkerding KV. Expanded instrument comparison of amplicon DNA melting analysis for mutation scanning and genotyping. Clin Chem 2007;53:1544-8.  https://doi.org/10.1373/clinchem.2007.088120
  20. Reed GH, Wittwer CT. Sensitivity and specificity of single-nucleotide polymorphism scanning by high-resolution melting analysis. Clin Chem 2004;50:1748-54.  https://doi.org/10.1373/clinchem.2003.029751
  21. White HE, Hall VJ, Cross NC. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clin Chem 2007;53:1960-2.  https://doi.org/10.1373/clinchem.2007.093351
  22. Ganopoulos I, Tsaballa A, Xanthopoulou A, Madesis P, Tsaftaris A. Sweet cherry cultivar identification by high-resolution-melting (HRM) analysis using gene-based SNP markers. Plant Mol Biol Report 2013;31:763-8.  https://doi.org/10.1007/s11105-012-0538-z
  23. Jeong HJ, Jo YD, Park SW, Kang BC. Identification of Capsicum species using SNP markers based on high resolution melting analysis. Genome 2010;53:1029-40.  https://doi.org/10.1139/G10-094
  24. Jin SB, Kim HB, Park S, Kim MJ, Choi CW, Yun SH. Identification of the 'Haryejosaeng'mandarin cultivar by multiplex PCR-based SNP genotyping. Mol Biol Rep 2020;47:8385-95.  https://doi.org/10.1007/s11033-020-05850-4
  25. Pereira L, Gomes S, Barrias S, Fernandes JR, Martins-Lopes P. Applying high-resolution melting (HRM) technology to olive oil and wine authenticity. Food Res Int 2018;103:170-81.  https://doi.org/10.1016/j.foodres.2017.10.026
  26. Run-ting Y, Bo W, Chong L, Pei Z, Ji-wu Z, Yun Z, Bo J, Bi-rong Z, Guang-yan Z. Comparison of allele-specific PCR and high resolution melting analysis in SNP genotyping and their application in pummelo cultivar identification. Acta Horticulturae Sinica 2013;40:1061. 
  27. Im JH, Oh MJ, Oh YL, Raman J, Jang KY, Kong WS. Development of SNP markers for discriminating color of Flammulina velutipes. J Mushrooms; 2019. p. 42. 
  28. Maeda A, Terashima K, Hasebe K. Development of a method for rapid strain-typing of a shiitake cultivar, Kinko 115, by high-resolution melting (HRM) analysis. Mushroom Science and Biotechnology 2015;23:114-9. 
  29. Zhang X, Yu H, Yang Q, Wang Z, Xia R, Chen C, Qu Y, Tan R, Shi Y, Xiang P. A forensic detection method for hallucinogenic mushrooms via high-resolution melting (HRM) analysis. Genes 2021;12:199. 
  30. Korea Rural Economic Institute. Forestry observation for Lentinula edodes, November. Naju: Korea Rural Economic Institute; 2020. p. 1-6. 
  31. Shim D, Park SG, Kim K, Bae W, Lee GW, Ha BS, Ro HS, Kim M, Ryoo R, Rhee SK. Whole genome de novo sequencing and genome annotation of the world popular cultivated edible mushroom, Lentinula edodes. J Biotechnol 2016;223:24-5.  https://doi.org/10.1016/j.jbiotec.2016.02.032
  32. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W. Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 2008;5:183-8.  https://doi.org/10.1038/nmeth.1179
  33. Cabezas JA, Ibanez J, Lijavetzky D, Velez D, Bravo G, Rodriguez V, Carreno I, Jermakow AM, Carreno J, Ruiz-Garcia L. A 48 SNP set for grapevine cultivar identification. BMC Plant Biol 2011;11:1-12.  https://doi.org/10.1186/1471-2229-11-1
  34. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 2003;4:981-94. 
  35. Glaubitz JC, Rhodes Jr OE, DeWoody JA. Prospects for inferring pairwise relationships with single nucleotide polymorphisms. Mol Ecol 2003;12:1039-47.  https://doi.org/10.1046/j.1365-294X.2003.01790.x
  36. Oh YL, Choi IG, Kong WS, Jang KY, Oh Mj, Im JH. Evaluating genetic diversity of Agaricus bisporus accessions through phylogenetic analysis using single-nucleotide polymorphism (SNP) markers. Mycobiology 2021;49:61-8.  https://doi.org/10.1080/12298093.2020.1850172
  37. Oh YL, Choi IG, Jang KY, Kim MS, Oh MJ, Im JH. SNP-based genetic linkage map and quantitative trait locus mapping associated with the agronomically important traits of Hypsizygus marmoreus. Mycobiology 2021;49:589-98.  https://doi.org/10.1080/12298093.2021.2018784
  38. Woo SI, Kim ES, Han JG, Jang KY, Shin PG, Oh YL, Oh MJ, Jo SH, Lee JH, Kim KS. Genome-wide single nucleotide polymorphism-based assay for phylogenetic relationship of the Flammulina velutipes. Kor J Mycol 2015;43:231-8. 
  39. Wu J, Choi J, Asiegbu FO, Lee YH. Comparative genomics platform and phylogenetic analysis of fungal laccases and multi-copper oxidases. Mycobiology 2020;48:373-82.  https://doi.org/10.1080/12298093.2020.1816151
  40. Li D, Zeng R, Li Y, Zhao M, Chao J, Li Y, Wang K, Zhu L, Tian W-M, Liang C. Gene expression analysis and SNP/InDel discovery to investigate yield heterosis of two rubber tree F1 hybrids. Sci Rep 2016;6:1-12.  https://doi.org/10.1038/s41598-016-0001-8
  41. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491-8.  https://doi.org/10.1038/ng.806
  42. Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012;2012:831460.