DOI QR코드

DOI QR Code

Interaction of Ion Cyclotron Electromagnetic Wave with Energetic Particles in the Existence of Alternating Electric Field Using Ring Distribution

  • Shukla, Kumari Neeta (Department of Applied Sciences, Manav Rachna International Institute of Research and Studies) ;
  • Kumari, Jyoti (Department of Physics, Amity Institute of Applied Sciences, Amity University) ;
  • Pandey, Rama Shankar (Department of Physics, Amity Institute of Applied Sciences, Amity University)
  • 투고 : 2022.03.08
  • 심사 : 2022.04.28
  • 발행 : 2022.06.15

초록

The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn's internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn's ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.

키워드

과제정보

Authors are grateful to the reviewers of paper for their expert comments and evaluating the manuscript fastidiously.

참고문헌

  1. Ahirwar G, Varma P, Tiwari MS, Electromagnetic ion-cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function - particle aspect analysis, Ann. Geophys. 24, 1919-1930 (2006). https://doi.org/10.5194/angeo-24-1919-2006
  2. Ashour-Abdalla M, Thorne RM, Toward a unified view of diffuse auroral precipitation, J. Geophys. Res. 83, 4755-4766 (1978). https://doi.org/10.1029/JA083iA10p04755
  3. Barbosa DD, Theory and observations of electromagnetic ion cyclotron waves in Saturn's inner magnetosphere, J. Geophys. Res. Space Phys. 98, 9345-9350 (1993). https://doi.org/10.1029/93JA00476
  4. Blanco-Cano X, Russell CT, Strangeway RJ, The Io mass-loading disk: wave dispersion analysis, J. Geophys. Res. Space Phys. 106, 26261-26275 (2001a). https://doi.org/10.1029/2001JA900090
  5. Blanco-Cano X, Russell CT, Strangeway RJ, Kivelson MG, Khurana KK, Galileo observations of ion cyclotron waves in the Io torus, Adv. Space Res. 28, 1469-1474 (2001b). https://doi.org/10.1016/S0273-1177(01)00548-8
  6. Brinca AL, Tsurutani BT, On the excitation of cyclotron harmonic waves by newborn heavy ions, J. Geophys. Res. Space Phys. 94, 5467-5473 (1989a). https://doi.org/10.1029/JA094iA05p05467
  7. Brinca AL, Tsurutani BT, The oblique behavior of low-frequency electromagnetic waves excited by newborn cometary ions, J. Geophys. Res. Space Phys. 94, 3-14 (1989b). https://doi.org/10.1029/JA094iA01p00003
  8. Coates AJ, Ion pickup at comets, Adv. Space Res. 33, 1977-1988 (2004). https://doi.org/10.1016/j.asr.2003.06.029
  9. Cowee MM, Omidi N, Russell CT, Blanco-Cano X, Tokar RL, Determining ion production rates near Saturn's extended neutral cloud from ion cyclotron wave amplitudes, J. Geophys. Res. Space Phys. 114, A04219 (2009).
  10. Cowley SWH, Bunce EJ, Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system, Planet. Space Sci. 49, 1067-1088 (2001). https://doi.org/10.1016/S0032-0633(00)00167-7
  11. Cowley SWH, Wright DM, Bunce EJ, Carter AC, Dougherty MK, et al., Cassini observations of planetary-period magnetic field oscillations in Saturn's magnetosphere: Doppler shifts and phase motion, Geophys. Res. Lett. 33, L07104 (2006). https://doi.org/10.1029/2005GL025522
  12. Frank LA, Burek BG, Ackerson KL, Wolfe JH, Mihalov JD, Plasmas in Saturn's magnetosphere, J. Geophys. Res. Space Phys. 85, 5695-5708 (1980). https://doi.org/10.1029/JA085iA11p05695
  13. Gurnett DA, Kurth WS, Hospodarsky GB, Persoon AM, Averkamp TF, et al., Radio and plasma wave observations at Saturn from Cassini's approach and first orbit, Science 307, 1255-1259 (2005). https://doi.org/10.1126/science.1105356
  14. Gurnett DA, Kurth WS, Scarf FL, Plasma waves near Saturn: initial results from Voyager 1, Science 212, 235-239 (1981). https://doi.org/10.1126/science.212.4491.235
  15. Hansen CJ, Esposito L, Stewart AIF, Colwell J, Hendrix A, et al., Enceladus' water vapor plume, Science 311, 1422-1425 (2006). https://doi.org/10.1126/science.1121254
  16. Huddleston DE, Johnstone AD, Relationship between wave energy and free energy from pickup ions in the comet halley environment, J. Geophys. Res. Space Phys. 97, 12217-12230 (1992). https://doi.org/10.1029/92JA00726
  17. Inhester B, A drift-kinetic treatment of the parametric decay of large-amplitude Alfven waves, J. Geophys. Res. Space Phys. 95, 10525-10539 (1990). https://doi.org/10.1029/JA095iA07p10525
  18. Kennel CF, Petschek HE, Limit on stably trapped particle fluxes, J. Geophys. Res. 71, 1-28 (1966). https://doi.org/10.1029/JZ071i001p00001
  19. Kintner PM, Kelley MC, Mozer FS, Electrostatic hydrogen cyclotron waves near one Earth radius altitude in the polar magnetosphere, Geophys. Res. Lett. 5, 139-142 (1978). https://doi.org/10.1029/GL005i002p00139
  20. Kivelson MG, Southwood DJ, Mirror instability II: the mechanism of nonlinear saturation, J. Geophys. Res. Space Phys. 101, 17365-17371 (1996). https://doi.org/10.1029/96JA01407
  21. Kumari J, Kaur R, Pandey RS, Effect of hot injections on electromagnetic ion-cyclotron waves in inner magnetosphere of Saturn, Astrophys. Space Sci. 363, 33 (2018). https://doi.org/10.1007/s10509-018-3250-0
  22. Kumari J, Pandey RS, Study of VLF wave with relativistic effect in Saturn magnetosphere in the presence of parallel A.C. electric field, Adv. Space Res. 63, 2279-2289 (2019). https://doi.org/10.1016/j.asr.2018.12.013
  23. Kumari J, Pandey RS, Whistler mode waves for ring distribution with A.C. electric field in inner magnetosphere of Saturn, Astrophys. Space Sci. 363, 249 (2018). https://doi.org/10.1007/s10509-018-3466-z
  24. Kurth WS, Gurnett DA, Plasma waves in planetary magnetospheres, J. Geophys. Res. Space Phys. 96, 18977-18991 (1991). https://doi.org/10.1029/91JA01819
  25. Lee MA, Ultra-low frequency waves at comets, in plasma waves and instabilities at comets and in magnetospheres, eds. Tsurutani BT, Oya H (American Geophysical Union, Washington, DC, 1989), 13-29.
  26. Lee YC, Kaw PK, Parametric instabilities of ion cyclotron waves in a plasma, Phys. Fluids 15, 911 (1972). https://doi.org/10.1063/1.1693999
  27. Leisner JS, Russell CT, Dougherty MK, Blanco-Cano X, Strangeway RJ, et al., Ion cyclotron waves in Saturn's E ring: initial cassini observations, Geophys. Res. Lett. 33, L11101 (2006). https://doi.org/10.1029/2005GL024875
  28. Leisner JS, Russell CT, Wei HY, Dougherty MK, Probing Saturn's ion cyclotron waves on high-inclination orbits: lessons for wave generation, J. Geophys. Res. Space Phys. 116, A09235 (2011). https://doi.org/10.1029/2011JA016555
  29. Lysak RL, Hudson MK, Temerin M, Ion heating by strong electrostatic ion cyclotron turbulence, J. Geophys. Res. Space Phys. 85, 678-686 (1980). https://doi.org/10.1029/JA085iA02p00678
  30. Mauk BH, Electromagnetic wave energization of heavy ions by the electric "phase bunching process, Geophys. Res. Lett. 9, 1163-1166 (1982). https://doi.org/10.1029/GL009i010p01163
  31. Meeks Z, Simon S, Kabanovic S, A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, Planet. Space Sci. 129, 47-60 (2016). https://doi.org/10.1016/j.pss.2016.06.003
  32. Meredith NP, Horne RB, Kersten T, Fraser BJ, Grew RS, Global morphology and spectral properties of EMIC waves derived from CRRES observations, J. Geophys. Res. Space Phys. 119, 5328-5342 (2014). https://doi.org/10.1002/2014JA020064
  33. Mitchell DG, Kurth WS, Hospodarsky GB, Krupp N, Saur J, et al., Ion conics and electron beams associated with auroral processes on Saturn, J. Geophys. Res. Space Phys. 114, A02212 (2009). https://doi.org/10.1029/2008JA013621
  34. Pandey RS, Pandey R, Srivastava AK, Karim S, Hariom, The electromagnetic ion-cyclotron instability in the presence of a.C. electric field for lorentzian kappa, Prog. Electromagn. Res. M. Pier M. 1, 207-217 (2008). https://doi.org/10.2528/PIERM08032601
  35. Pandey RS, Singh DK, Study of electromagnetic ion-cyclotron instability in a magnetoplasma, Prog. Electromagn. Res. M. Pier M. 14, 147-161 (2010). https://doi.org/10.2528/PIERM10052501
  36. Persoon AM, Gurnett DA, Kurth WS, Hospodarsky GB, Groene JB, et al., Equatorial electron density measurements in Saturn's inner magnetosphere, Geophys. Res. Lett. 32, L23105 (2005). https://doi.org/10.1029/2005GL024294
  37. Rodriguez-Martinez M, Blanco-Cano X, Russell CT, Leisner JS, Wilson RJ, et al., Harmonic growth of ion-cyclotron waves in Saturn's magnetosphere, J. Geophys. Res. Space Phys. 115, A09207 (2010). https://doi.org/10.1029/2009JA015000
  38. Rymer AM, Mauk BH, Hill TW, Paranicas C, Andr N, et al., Electron sources in Saturn's magnetosphere, J. Geophys. Res. Space Phys. 112, A02201 (2007). https://doi.org/10.1029/2006JA012017
  39. Shukla NK, Singh D, Pandey RS, Analytical study of electromagnetic ion cyclotron wave for ring distribution with AC electric field in Saturn magnetosphere, https://iopscience.iop.org/issue/1742-6596/1817/1J. Phys. Conf. Ser. 1817, 012020 (2021). https://doi.org/10.1088/1742-6596/1817/1/012020
  40. Sittler EC Jr, Ogilvie KW, Scudder JD, Survey of low-energy plasma electrons in Saturn's magnetosphere: voyagers 1 and 2, J. Geophys. Res. Space Phys. 88, 8847-8870 (1983). https://doi.org/10.1029/JA088iA11p08847
  41. Smith EJ, Tsurutani BT, Saturn's magnetosphere: observations of ion cyclotron waves near the dione L shell, J. Geophys. Res. Space Phys. 88, 7831-7836 (1983). https://doi.org/10.1029/JA088iA10p07831
  42. Summers D, Ni B, Meredith NP, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, J. Geophys. Res. Space Phys. 112, A04207 (2007). https://doi.org/10.1029/2006JA011993
  43. Summers D, Thorne RM, Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms, J. Geophys. Res. Space Phys. 108, 1143 (2003). https://doi.org/10.1029/2002JA009489
  44. SzegO K, Glassmeier KH, Bingham R, Bogdanov A, Fischer C, et al., Physics of mass loaded plasmas, Space Sci. Rev. 94, 429-671 (2000). https://doi.org/10.1023/A:1026568530975
  45. Thorne RM, Radiation belt dynamics: the importance of wave-particle interactions, Geophys. Res. Lett. 37, L22107 (2010). https://doi.org/10.1029/2010GL044990
  46. Thorne RM, Summers D, Kinetic instability of a gyrating ring distribution with application to satellite pickup in planetary magnetospheres, Planet. Space Sci. 37, 535-544 (1989). https://doi.org/10.1016/0032-0633(89)90094-9
  47. Usanova ME, Darrouzet F, Mann IR, Bortnik J, Statistical analysis of EMIC waves in plasmaspheric plumes from cluster observations, J. Geophys. Res. Space Phys. 118, 4946-4951 (2013). https://doi.org/10.1002/jgra.50464
  48. Wilson RJ, Tokar RL, Henderson MG, Thermal ion flow in Saturn's inner magnetosphere measured by the Cassini plasma spectrometer: a signature of the Enceladus torus? Geophys. Res. Lett. 36, L23104 (2009). https://doi.org/10.1029/2009GL040225
  49. Wu CS, Yoon PH, Freund HP, A theory of electron cyclotron waves generated along auroral field lines observed by ground facilities, Geophys. Res. Lett. 16, 1461-1464 (1989). https://doi.org/10.1029/GL016i012p01461
  50. Young DT, Berthelier JJ, Blanc M, Burch JL, Bolton S, et al., Composition and dynamics of plasma in Saturn's magnetosphere, Science 307, 1262-1266 (2005). https://doi.org/10.1029/JA094iA05p05467101126/science1106151