DOI QR코드

DOI QR Code

Diagnostic Imaging of Biliary Atresia

담도폐쇄증의 영상 진단

  • Haesung Yoon (Department of Radiology and Research Institute of Radiological Science, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Hyun Ji Lim (Department of Radiology and Research Institute of Radiological Science, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Jisoo Kim (Department of Radiology and Research Institute of Radiological Science, Severance Children's Hospital, Yonsei University College of Medicine) ;
  • Mi-Jung Lee (Department of Radiology and Research Institute of Radiological Science, Severance Children's Hospital, Yonsei University College of Medicine)
  • 윤혜성 (연세대학교 의과대학 세브란스 어린이병원 영상의학과, 방사선의과학연구소) ;
  • 임현지 (연세대학교 의과대학 세브란스 어린이병원 영상의학과, 방사선의과학연구소) ;
  • 김지수 (연세대학교 의과대학 세브란스 어린이병원 영상의학과, 방사선의과학연구소) ;
  • 이미정 (연세대학교 의과대학 세브란스 어린이병원 영상의학과, 방사선의과학연구소)
  • Received : 2022.05.23
  • Accepted : 2022.09.13
  • Published : 2022.09.01

Abstract

Biliary atresia is a rare but significant cause of neonatal cholestasis. An early and accurate diagnosis is important for proper management and prognosis. To diagnose biliary atresia, various imaging studies using ultrasonography, MRI, hepatobiliary scans, and cholangiography can be performed, although ultrasonography is more important for initial imaging studies. In this article, we review the findings of biliary atresia from various imaging modalities, including ultrasonography, MRI, hepatobiliary scans, and cholangiography. The known key imaging features include abnormal gallbladder size and shape, periportal thickening visible as a 'triangular cord' sign, invisible common bile duct, increased hepatic arterial flow, and combined anomalies. Aside from the imaging findings of biliary atresia, we also reviewed the diagnostic difficulty in the early neonatal period and the role of imaging in predicting hepatic fibrosis. We hope that this review will aid in the diagnosis of biliary atresia.

담도폐쇄증은 신생아 담즙 정체의 드물지만 중요한 원인이다. 적절한 치료와 예후를 위해서는 정확한 조기 진단이 중요하다. 본 종설에서는 초음파 검사, MRI, 간담도 핵의학스캔, 담관조영술 등의 영상 검사에서 담도폐쇄증의 영상 소견을 검토하였다. 지금까지 알려진 주요 영상의학적 소견들은 담낭의 비정상적인 모양과 크기, 간문맥 주변의 비후를 나타내는 'triangular cord' sign, 총담관이 보이지 않고, 간동맥 혈류가 증가하는 소견 등과 함께 동반된 기형의 유무들을 보이는 것이다. 담도폐쇄증의 진단을 위해 초음파 검사, MRI, 간담도 핵의학 스캔, 담관조영술 등의 여러 영상 검사들을 시행하며, 1차 영상 검사로 초음파 검사가 중요하다. 본 종설에서는 각 영상 검사들에서 지금까지 알려진 담도폐쇄증의 소견들과 함께 조기 신생아기에서 담도폐쇄증 진단의 어려움, 그리고 간 섬유화를 예측하기 위한 영상의 역할도 검토하였다. 본 종설이 담도폐쇄증 진단에 도움이 되길 바란다.

Keywords

References

  1. Gubernick JA, Rosenberg HK, Ilaslan H, Kessler A. US approach to jaundice in infants and children. Radiographics 2000;20:173-195  https://doi.org/10.1148/radiographics.20.1.g00ja25173
  2. Lakshminarayanan B, Davenport M. Biliary atresia: a comprehensive review. J Autoimmun 2016;73:1-9  https://doi.org/10.1016/j.jaut.2016.06.005
  3. Lee HJ, Lee SM, Park WH, Choi SO. Objective criteria of triangular cord sign in biliary atresia on US scans. Radiology 2003;229:395-400  https://doi.org/10.1148/radiol.292020472
  4. Napolitano M, Franchi-Abella S, Damasio MB, Augdal TA, Avni FE, Bruno C, et al. Practical approach to imaging diagnosis of biliary atresia, part 1: prenatal ultrasound and magnetic resonance imaging, and postnatal ultrasound. Pediatr Radiol 2021;51:314-331  https://doi.org/10.1007/s00247-020-04840-9
  5. Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet 2009;374:1704-1713  https://doi.org/10.1016/S0140-6736(09)60946-6
  6. Kim WS, Kim IO, Yeon KM, Park KW, Seo JK, Kim CJ. Choledochal cyst with or without biliary atresia in neonates and young infants: US differentiation. Radiology 1998;209:465-469  https://doi.org/10.1148/radiology.209.2.9807575
  7. Shin HJ, Yoon H, Han SJ, Ihn K, Koh H, Kwon JY, et al. Key imaging features for differentiating cystic biliary atresia from choledochal cyst: prenatal ultrasonography and postnatal ultrasonography and MRI. Ultrasonography 2021;40:301-311  https://doi.org/10.14366/usg.20061
  8. Kim WS, Cheon JE, Youn BJ, Yoo SY, Kim WY, Kim IO, et al. Hepatic arterial diameter measured with US: adjunct for US diagnosis of biliary atresia. Radiology 2007;245:549-555  https://doi.org/10.1148/radiol.2452061093
  9. Lee MS, Kim MJ, Lee MJ, Yoon CS, Han SJ, Oh JT, et al. Biliary atresia: color doppler US findings in neonates and infants. Radiology 2009;252:282-289  https://doi.org/10.1148/radiol.2522080923
  10. He JP, Hao Y, Wang XL, Yang XJ, Shao JF, Feng JX. Comparison of different noninvasive diagnostic methods for biliary atresia: a meta-analysis. World J Pediatr 2016;12:35-43  https://doi.org/10.1007/s12519-015-0071-x
  11. Zhou LY, Jiang H, Shan QY, Chen D, Lin XN, Liu BX, et al. Liver stiffness measurements with supersonic shear wave elastography in the diagnosis of biliary atresia: a comparative study with grey-scale US. Eur Radiol 2017;27:3474-3484  https://doi.org/10.1007/s00330-016-4710-y
  12. Wang X, Qian L, Jia L, Bellah R, Wang N, Xin Y, et al. Utility of shear wave elastography for differentiating biliary atresia from infantile hepatitis syndrome. J Ultrasound Med 2016;35:1475-1479  https://doi.org/10.7863/ultra.15.08031
  13. Duan X, Peng Y, Liu W, Yang L, Zhang J. Does supersonic shear wave elastography help differentiate biliary atresia from other causes of cholestatic hepatitis in infants less than 90 days old? Compared with grey-scale US. Biomed Res Int 2019;2019:9036362 
  14. Brahee DD, Lampl BS. Neonatal diagnosis of biliary atresia: a practical review and update. Pediatr Radiol 2022;52:685-692  https://doi.org/10.1007/s00247-021-05148-y
  15. Sung S, Jeon TY, Yoo SY, Hwang SM, Choi YH, Kim WS, et al. Incremental value of MR cholangiopancreatography in diagnosis of biliary atresia. PLoS One 2016;11:e0158132 
  16. Siles P, Aschero A, Gorincour G, Bourliere-Najean B, Roquelaure B, Delarue A, et al. A prospective pilot study: can the biliary tree be visualized in children younger than 3 months on magnetic resonance cholangiopancreatography? Pediatr Radiol 2014;44:1077-1084  https://doi.org/10.1007/s00247-014-2953-9
  17. Napolitano M, Franchi-Abella S, Damasio BM, Augdal TA, Avni FE, Bruno C, et al. Practical approach for the diagnosis of biliary atresia on imaging, part 2: magnetic resonance cholecystopancreatography, hepatobiliary scintigraphy, percutaneous cholecysto-cholangiography, endoscopic retrograde cholangiopancreatography, percutaneous liver biopsy, risk scores and decisional flowchart. Pediatr Radiol 2021;51:1545-1554  https://doi.org/10.1007/s00247-021-05034-7
  18. Kim MJ, Park YN, Han SJ, Yoon CS, Yoo HS, Hwang EH, et al. Biliary atresia in neonates and infants: triangular area of high signal intensity in the porta hepatis at T2-weighted MR cholangiography with US and histopathologic correlation. Radiology 2000;215:395-401  https://doi.org/10.1148/radiology.215.2.r00ma04395
  19. Kim YH, Kim MJ, Shin HJ, Yoon H, Han SJ, Koh H, et al. MRI-based decision tree model for diagnosis of biliary atresia. Eur Radiol 2018;28:3422-3431  https://doi.org/10.1007/s00330-018-5327-0
  20. Kim J, Yoon H, Lee MJ, Kim MJ, Han K, Han SJ, et al. Clinical utility of mono-exponential model diffusion weighted imaging using two b-values compared to the bi- or stretched exponential model for the diagnosis of biliary atresia in infant liver MRI. PLoS One 2019;14:e0226627 
  21. Liu B, Cai J, Zhu J, Zheng H, Zhang Y, Wang L. Diffusion tensor imaging for evaluating biliary atresia in infants and neonates. PLoS One 2016;11:e0168477 
  22. Kim J, Shin HJ, Yoon H, Han SJ, Koh H, Kim MJ, et al. Diffusion-weighted imaging for differentiation of biliary atresia and grading of hepatic fibrosis in infants with cholestasis. Korean J Radiol 2021;22:253-262  https://doi.org/10.3348/kjr.2020.0055
  23. Kianifar HR, Tehranian S, Shojaei P, Adinehpoor Z, Sadeghi R, Kakhki VR, et al. Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: systematic review and meta-analysis of the literature. Pediatr Radiol 2013;43:905-919  https://doi.org/10.1007/s00247-013-2623-3
  24. Zhou L, Xie J, Gao P, Chen H, Chen S, Wang G, et al. Percutaneous ultrasound-guided cholecystocholangiography with microbubbles combined with liver biopsy for the assessment of suspected biliary atresia. Pediatr Radiol 2022;52:1075-1085  https://doi.org/10.1007/s00247-022-05280-3
  25. Koot BGP, Kelly DA, Hadzic N, Gonzales E, Hierro L, Davenport M, et al. Endoscopic retrograde cholangiopancreatography in infants: availability under threat: a survey on availability, need, and clinical practice in Europe and Israel. J Pediatr Gastroenterol Nutr 2020;71:e54-e58  https://doi.org/10.1097/MPG.0000000000002752
  26. Lee SY, Kim GC, Choe BH, Ryeom HK, Jang YJ, Kim HJ, et al. Efficacy of US-guided percutaneous cholecystocholangiography for the early exclusion and type determination of biliary atresia. Radiology 2011;261:916-922  https://doi.org/10.1148/radiol.11110665
  27. Hwang SM, Jeon TY, Yoo SY, Choe YH, Lee SK, Kim JH. Early US findings of biliary atresia in infants younger than 30 days. Eur Radiol 2018;28:1771-1777  https://doi.org/10.1007/s00330-017-5092-5
  28. Zhou LY, Wang W, Shan QY, Liu BX, Zheng YL, Xu ZF, et al. Optimizing the US diagnosis of biliary atresia with a modified triangular cord thickness and gallbladder classification. Radiology 2015;277:181-191  https://doi.org/10.1148/radiol.2015142309
  29. Mittal V, Saxena AK, Sodhi KS, Thapa BR, Rao KL, Das A, et al. Role of abdominal sonography in the preoperative diagnosis of extrahepatic biliary atresia in infants younger than 90 days. AJR Am J Roentgenol 2011;196:W438-W445  https://doi.org/10.2214/AJR.10.5180
  30. Weerasooriya VS, White FV, Shepherd RW. Hepatic fibrosis and survival in biliary atresia. J Pediatr 2004;144:123-125  https://doi.org/10.1016/j.jpeds.2003.09.042
  31. Liu B, Cai J, Xu Y, Peng X, Zheng H, Huang K, et al. Three-dimensional magnetic resonance cholangiopancreatography for the diagnosis of biliary atresia in infants and neonates. PLoS One 2014;9:e88268 
  32. Lee MH, Shin HJ, Yoon H, Han SJ, Koh H, Lee MJ. Periportal thickening on magnetic resonance imaging for hepatic fibrosis in infantile cholestasis. World J Gastroenterol 2020;26:2821-2830  https://doi.org/10.3748/wjg.v26.i21.2821
  33. Lewin M, Poujol-Robert A, Boelle PY, Wendum D, Lasnier E, Viallon M, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007;46:658-665  https://doi.org/10.1002/hep.21747
  34. Mo YH, Jaw FS, Ho MC, Wang YC, Peng SS. Hepatic ADC value correlates with cirrhotic severity of patients with biliary atresia. Eur J Radiol 2011;80:e253-e257  https://doi.org/10.1016/j.ejrad.2010.11.002
  35. Peng SS, Jeng YM, Hsu WM, Yang JC, Ho MC. Hepatic ADC map as an adjunct to conventional abdominal MRI to evaluate hepatic fibrotic and clinical cirrhotic severity in biliary atresia patients. Eur Radiol 2015;25:2992-3002  https://doi.org/10.1007/s00330-015-3716-1
  36. Tosun M, Inan N, Sarisoy HT, Akansel G, Gumustas S, Gurbuz Y, et al. Diagnostic performance of conventional diffusion weighted imaging and diffusion tensor imaging for the liver fibrosis and inflammation. Eur J Radiol 2013;82:203-207  https://doi.org/10.1016/j.ejrad.2012.09.009
  37. Seo N, Chung YE, Park YN, Kim E, Hwang J, Kim MJ. Liver fibrosis: stretched exponential model outperforms mono-exponential and bi-exponential models of diffusion-weighted MRI. Eur Radiol 2018;28:2812-2822  https://doi.org/10.1007/s00330-017-5292-z
  38. Chen H, Zhou L, Liao B, Cao Q, Jiang H, Zhou W, et al. Two-dimensional shear wave elastography predicts liver fibrosis in jaundiced infants with suspected biliary atresia: a prospective study. Korean J Radiol 2021;22:959-969 https://doi.org/10.3348/kjr.2020.0885