Acknowledgement
This research was funded by the Ministry of Oceans and Fisheries, Republic of Korea, under Contract No. 20180373 as a part of the project "Establishing a Foundation for the Year-Round Production of Flatfish Eggs and Improving Productivity. YR Kim was also supported by 'LED-Marine Technology Convergence R&D Center" funded by the Ministry of Ocean and Fisheries, Korea.
References
- Allken V, Handegard NO, Rosen S, Schreyeck T, Mahiout T, Malde K. Fish species identification using a convolutional neural network trained on synthetic data. ICES J Mar Sci. 2019;76:342-9. https://doi.org/10.1093/icesjms/fsy147
- Ayob AF, Khairuddin K, Mustafah YM, Salisa AR, Kadir K. Analysis of pruned neural networks (MobileNetV2-YOLO v2) for underwater object detection. In: Proceedings of the 11th National Technical Seminar on Unmanned System Technology; 2019; Gambang, Malaysia.
- Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35:1798-828. https://doi.org/10.1109/TPAMI.2013.50
- Choi Y, Kim JH, Park JY. Marine fishes of Korea. Seoul, Korea: KyoHak; 2002.
- Cutter G, Stierhoff K, Zeng J. Automated detection of rockfish in unconstrained underwater videos using Haar cascades and a new image dataset: labeled fishes in the wild. Paper presented at: IEEE Winter Conference on Applications of Computer Vision Workshops; 2015; Waikoloa, HI.
- Fukusho K. Studies on fry production of Japanese striped knife jaw Oplegnathus fasciatus, with special reference to feeding ecology and mass culture of food organisms. Spec Rep Nagasaki Pre Ins Fish. 1979; 430:173.
- Girshick R. Fast R-CNN. Paper presented at: 2015 IEEE International Conference on Computer Vision (ICCV); 2015; Santiago, Chile. pp. 1440-8.
- Han F, Yao J, Zhu H, Wang C. Marine organism detection and classification from underwater vision based on the deep CNN method. Math Probl Eng. 2020;3937580.
- Jang JC, Choi MJ, Yang YS, Lee HB, Yu YM, Kim JM. Dim-light photoreceptor of chub mackerel Scomber japonicus and the photoresponse upon illumination with LEDs of different wavelengths. Fish Physiol Biochem. 2016;42:1015-25. https://doi.org/10.1007/s10695-015-0193-z
- Jang JC, Noh GE, Kim YR, Yu YM, Kim JM. Spectral sensitivity and photoresponse in the rock bream Oplegnathus fasciatus and their relationships with the absorption maximum of the photoreceptor. Fish Physiol Biochem. 2019;45:1759-69. https://doi.org/10.1007/s10695-019-00672-z
- Kumai H. Biological studies on culture of the Japanese parrot fish Oplegnathus fasciatus (Temmincket Schlegel). Bull Fish Lab Kinki Univ. 1984;2:127.
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-44. https://doi.org/10.1038/nature14539
- Levy D, Belfer Y, Osherov E, Bigal E, Scheinin AP, Nativ H, et al. Automated analysis of marine video with limited data. Papaer presented at: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2018; Salt Lake City, UT.
- Ma K, Huang B, Yin H. Underwater sea cucumbers detection based on improved SSD. Paper presented at: 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS); 2019; Shenyang, China.
- Maggio E, Cavallaro A. Video tracking: theory and practice. Hoboken, NJ: John Wiley & Sons; 2011.
- Noldus LPJJ, Spink AJ, Tegelenbosch RAJ. EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput. 2001;33:398-414. https://doi.org/10.3758/BF03195394
- Redmon J, Farhadi A. Yolov3: an incremental improvement. 2018. https://arxiv.org/abs/1804.02767
- Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
- Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85-117. https://doi.org/10.1016/j.neunet.2014.09.003
- Sun M, Yang X, Xie Y. Deep learning in aquaculture: a review. J Comput. 2020;31:294-319.
- Yang X, Zhang S, Liu J, Gao Q, Dong S, Zhou C. Deep learning for smart fish farming: applications, opportunities and challenges. Rev Aquacult. 2020;13:66-90. https://doi.org/10.1111/raq.12464