DOI QR코드

DOI QR Code

Cholinesterase inhibitory activities of neuroprotective fraction derived from red alga Gracilaria manilaensis

  • Pang, Jun-Rui (Department of Biological Sciences, School of Medical and Life Sciences, Sunway University) ;
  • How, Sher-Wei (Department of Molecular Medicine and Pathology, Faculty of Medical and Health Science, The University of Auckland) ;
  • Wong, Kah-Hui (Department of Anatomy, Faculty of Medicine, Universiti Malaya) ;
  • Lim, Siew-Huah (Department of Chemistry, Faculty of Sciences, Universiti Malaya) ;
  • Phang, Siew-Moi (Faculty of Applied Sciences, UCSI University) ;
  • Yow, Yoon-Yen (Department of Biological Sciences, School of Medical and Life Sciences, Sunway University)
  • Received : 2021.10.06
  • Accepted : 2021.12.12
  • Published : 2022.02.28

Abstract

Anti-cholinesterase (ChE)s are commonly prescribed as the symptomatic treatment of Alzheimer's disease. They are applied to prevent the breakdown of neurotransmitter acetylcholine (ACh) that bind to muscarinic and nicotinic receptors in the synaptic cleft. Seaweeds are one of the richest sources of bioactive compounds for both nutraceuticals and pharmacognosy applications. This study aimed to determine the anti-ChEs activity of Gracilaria manilaensis, one of the red seaweeds notables for its economic importance as food and raw materials for agar production. Methanol extracts (GMM) of G. manilaensis were prepared through maceration, and further purified with column chromatography into a semi-pure fraction. Ellman assay was carried out to determine the anti-acetylcholinesterase (AChE) and anti-butyrylcholinesterase (BuChE) activities of extracts and fractions. Lineweaver-Burk plot analysis was carried out to determine the inhibition kinetic of potent extract and fraction. Major compound(s) from the most potent fraction was determined by liquid chromatography-mass spectrometry (LCMS). GMM and fraction G (GMMG) showed significant inhibitory activity AChE with EC50 of 2.6 mg/mL and 2.3 mg/mL respectively. GMM and GMMG exhibit mixed-inhibition and uncompetitive inhibition respectively against AChE. GMMG possesses neuroprotective compounds such as cynerine A, graveolinine, militarinone A, eplerenone and curumenol. These findings showed a promising insight of G. manilaensis to be served as a nutraceutical for neuronal health care in the future.

Keywords

Acknowledgement

This research was funded by Sunway Internal Research Grants (Project No: INT-FST-DBS-2016-1, INTS-2017-SST-DBS-01 and INTS-2018-SST-DBS-09) from Sunway University and Jeffery Cheah Foundation Scholarship.

References

  1. Alzheimer's Association Report. 2021 Alzheimer's disease facts and figures. J Alzheimer Dement. 2021;17:327-406. https://doi.org/10.1002/alz.12328
  2. An ZY, Yan YY, Peng D, Ou TM, Tan JH, Huang SL, et al. Synthesis and evaluation of graveoline and graveolinine derivatives with potent anti-angiogenesis activities. Eur J Med Chem. 2010; 45:3895-903. https://doi.org/10.1016/j.ejmech.2010.05.043
  3. Andriani Y, Syamsumir DF, Yee TC, Harisson FS, Herng GM, Abdullah SA, et al. Biological activities of isolated compounds from three edible Malaysian red seaweeds, Gracilaria changii, G. manilaensis and Gracilaria sp. Nat Prod Commun. 2016;11:1117-20.
  4. Api AM, Belsito D, Bhatia S, Bruze M, Calow P, Dagli ML, et al. RIFM fragrance ingredient safety assessment, (2E,6Z)-nona-2,6-dien-1-ol, CAS registry number 28069-72-9. Food Chem Toxicol. 2015;84:S57-65. https://doi.org/10.1016/j.fct.2015.06.023
  5. Api AM, Belsito D, Botelho D, Bruze M, Burton GA Jr, Buschmann J, et al. RIFM fragrance ingredient safety assessment,(E,Z)-2,6-nonadien-1-ol acetate, CAS registry number 68555-65-7. Food Chem Toxicol. 2019;127:S216-23. https://doi.org/10.1016/j.fct.2019.03.023
  6. Bagheri E, Hajiaghaalipour F, Nyamathulla S, Salehen NA. Ethanolic extract of Brucea javanica inhibit proliferation of HCT-116 colon cancer cells via caspase activation. RSC Advances. 2018;8:681-9. https://doi.org/10.1039/C7RA09618F
  7. Bayorh M, Rollins-Hairston A, Adiyiah J, Lyn D, Eatman D. Eplerenone inhibits aldosterone-induced renal expression of cyclooxygenase. J Renin Angiotensin Aldosterone Syst. 2012;13:353-9. https://doi.org/10.1177/1470320312443911
  8. Cao CY, Zhang CC, Shi XW, Li D, Cao W, Yin X, et al. Sarcodonin G derivatives exhibit distinctive effects on neurite outgrowth by modulating NGF signaling in PC12 cells. ACS Chem Neurosci. 2018;9:1607-15. https://doi.org/10.1021/acschemneuro.7b00488
  9. Chen B, Geng J, Gao SX, Yue WW, Liu Q. Eplerenone modulates interleukin-33/sST2 signaling and IL-1β in left ventricular systolic dysfunction after acute myocardial infarction. J Interferon Cytokine Res. 2018;38:137-44. https://doi.org/10.1089/jir.2017.0067
  10. Chen H, Sun F, Zhong X, Shao Y, Yoshimura A, Liu Y, et al. Eplerenone-mediated aldosterone blockade prevents renal fibrosis by reducing renal inflammation, interstitial cell proliferation and oxidative stress. Kidney Blood Press Res. 2013;37:557-66. https://doi.org/10.1159/000355736
  11. Cheng Y, Schneider B, Riese U, Schubert B, Li Z, Hamburger M. (+)-N-Deoxymilitarinone A, a neuritogenic pyridone alkaloid from the insect pathogenic fungus Paecilomyces farinosus. J Nat Prod. 2006;69:436-8. https://doi.org/10.1021/np050418g
  12. Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM. Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol. 2013;11:315-35. https://doi.org/10.2174/1570159X11311030006
  13. Dong F, Xie W, Strong JA, Zhang JM. Mineralocorticoid receptor blocker eplerenone reduces pain behaviors in vivo and decreases excitability in small-diameter sensory neurons from local inflamed dorsal root ganglia in vitro. Anesthesiology. 2012;117:1102-12. https://doi.org/10.1097/ALN.0b013e3182700383
  14. Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J Antibiot. 1976;29:1346-8. https://doi.org/10.7164/antibiotics.29.1346
  15. Flath RA, Mon TR, Lorenz G, Whitten J, Mackley JW. Volatile components of Acacia sp. blossoms. J Agric Food Chem. 1983;31:1167-70. https://doi.org/10.1021/jf00120a008
  16. Gutierrez M, Matus MF, Poblete T, Amigo J, Vallejos G, Astudillo L, et al. Isoxazoles: synthesis, evaluation and bioinformatic design as acetylcholinesterase inhibitors. J Pharm Pharmacol. 2013;65:1796-804. https://doi.org/10.1111/jphp.12180
  17. Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer's disease: targeting the cholinergic system. Curr Neuropharmacol. 2016;14:101-15. https://doi.org/10.2174/1570159X13666150716165726
  18. Hamdi OAA, Ye LJ, Kamarudin MNA, Hazni H, Paydar M, Looi CY, et al. Neuroprotective and antioxidant constituents from Curcuma zedoaria rhizomes. Rec Nat Prod. 2015;9:349-55.
  19. Hsiao JW, Chen LC, Lin CL, Chang TH, Chen CL, Sung PJ, et al. A new sesquiterpenoid and bioactive constituents of Curcuma zedoaria. Chem Nat Compd. 2020;56:1076-80. https://doi.org/10.1007/s10600-020-03230-9
  20. Hung SY, Fu WM. Drug candidates in clinical trials for Alzheimer's disease. J Biomed Sci. 2017;24:47. https://doi.org/10.1186/s12929-017-0355-7
  21. Jonca J, Zuk M, Wasag B, Janaszak-Jasiecka A, Lewandowski K, Wielgomas B, et al. New insights into butyrylcholinesterase activity assay : serum dilution factor as a crucial parameter. PLOS ONE. 2015;10:e0139480. https://doi.org/10.1371/journal.pone.0139480
  22. Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia. Clin Interv Aging. 2017;12:697-707. https://doi.org/10.2147/CIA.S129145
  23. Kannan RRR, Aderogba MA, Ndhlala AR, Stirk WA, Van Staden J. Acetylcholinesterase inhibitory activity of phlorotannins isolated from the brown alga, Ecklonia maxima (Osbeck) Papenfuss. Food Res Int. 2013;54:1250-4. https://doi.org/10.1016/j.foodres.2012.11.017
  24. Kemp TR, Knavel DE, Stoltz LP. Identification of some volatile compounds from cucumber. J Agric Food Chem. 1974;22:717-8. https://doi.org/10.1021/jf60194a006
  25. Kihara T, Shimohama S. Alzheimer's disease and acetylcholine receptors. Acta Neurobiol Exp. 2004;64:99-105.
  26. Kuenzi P, Kiefer S, Koryakina A, Hamburger M. Promotion of cell death or neurite outgrowth in PC-12 and N2a cells by the fungal alkaloid militarinone A depends on basal expression of p53. Apoptosis. 2008;13:364-76. https://doi.org/10.1007/s10495-008-0185-x
  27. Labuzek K, Liber S, Buldak L, Krupej-Kedzierska J, Machnik G, Bobrzyk M, et al. Eplerenone mimics features of the alternative activation in macrophages obtained from patients with heart failure and healthy volunteers. Eur J Pharmacol. 2014;726:96-108. https://doi.org/10.1016/j.ejphar.2014.01.043
  28. Lo JY, Kamarudin MNA, Hamdi OAA, Awang K, Kadir HA. Curcumenol isolated from Curcuma zedoaria suppresses Akt-mediated NF-κB activation and p38 MAPK signaling pathway in LPS-stimulated BV-2 microglial cells. Food Funct. 2015;6:3550-9. https://doi.org/10.1039/C5FO00607D
  29. Loizzo MR, Bonesi M, Nabavi SM, Sobarzo-Sanchez E, Rastrelli L, Tundis R, et al. Hypoglycaemic effects of plants food constituents via inhibition of carbohydrate-hydrolysing enzymes: from chemistry to future applications. In: Andrade PB, Valentao P, Pereira DM, editors. Natural products targeting clinically relevant enzymes. Weinheim, Germany: Wiley-VCH; 2017. p 135-53.
  30. Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology. 2015;96:255-62. https://doi.org/10.1016/j.neuropharm.2014.11.018
  31. Luo W, Lv JW, Wang T, Zhang ZY, Guo HY, Song ZY, et al. Synthesis, in vitro and in vivo biological evaluation of novel graveolinine derivatives as potential anti-Alzheimer's agents. Bioorg Med Chem. 2020;28:115190. https://doi.org/10.1016/j.bmc.2019.115190
  32. Machado LP, Carvalho LR, Young MCM, Cardoso-Lopes EM, Centeno DC, Zambotti-Villela L, et al. Evaluation of acetylcholinesterase inhibitory activity of Brazilian red macroalgae organic extracts. Rev Bras Farmacogn. 2015;25:657-62. https://doi.org/10.1016/j.bjp.2015.09.003
  33. Marcotullio MC, Mwankie GNO-M, Cossignani L, Tirillini B, Pagiotti R. Phytochemical analysis and antiradical properties of Sarcodon imbricatus (L.:Fr) Karsten. Nat Prod Commun. 2008;3:1907-10.
  34. Marcotullio MC, Pagiott R, Maltese F, Obara Y, Hoshino T, Nakahata N, et al. Neurite outgrowth activity of cyathane diterpenes from Sarcodon cyrneus, cyrneines A and B. Planta Med. 2006;72:819-23. https://doi.org/10.1055/s-2006-946681
  35. McGinty D, Letizia CS, Api AM. Fragrance material review on (2E,6Z)-nona-2,6-dien-1-ol. Food Chem Toxicol. 2010;48:S91-2. https://doi.org/10.1016/j.fct.2009.11.020
  36. Mielke MM, Leoutsakos JM, Corcoran CD, Green RC, Norton MC, Welsh-Bohmer KA, et al. Effects of food and drug administration-approved medications for Alzheimer's disease on clinical progression. Alzheimers Dement. 2012;8:180-7. https://doi.org/10.1016/j.jalz.2011.02.011
  37. Ng PK, Lin SM, Lim PE, Hurtado AQ, Phang SM, et al. Genetic and morphological analyses of Gracilaria firma and G. changii (Gracilariaceae, Rhodophyta), the commercially important agarophytes in western Pacific. PLOS ONE. 2017;12:1-21.
  38. Nitthithanasilp S, Intaraudom C, Boonyuen N, Suvannakad R, Pittayakhajonwut P. Antimicrobial activity of cyathane derivatives from Cyathus subglobisporus BCC44381. Tetrahedron. 2018;74:6907-16. https://doi.org/10.1016/j.tet.2018.10.012
  39. Obara Y, Hoshino T, Marcotullio MC, Pagiotti R, Nakahata N. A novel cyathane diterpene, cyrneine A, induces neurite outgrowth in a Rac1-dependent mechanism in PC12 cells. Life Sci. 2007;80:1669-77. https://doi.org/10.1016/j.lfs.2007.01.057
  40. Okubo H, Inagaki H, Gondo Y, Kamide K, Ikebe K, Masui Y, et al. Association between dietary patterns and cognitive function among 70-year-old Japanese elderly: a cross-sectional analysis of the SONIC study. Nutr J. 2017;16:56. https://doi.org/10.1186/s12937-017-0273-2
  41. Pang JR, Goh VMJ, Tan CY, Phang SM, Wong KH, Yow YY, et al. Neuritogenic and in vitro antioxidant activities of Malaysian Gracilaria manilaensis Yamamoto & Trono. J Appl Phycol. 2018;30:3253-60. https://doi.org/10.1007/s10811-018-1438-x
  42. Pangestuti R, Kim SK. Neuroprotective effects of marine algae. Mar Drugs. 2011;9:803-18. https://doi.org/10.3390/md9050803
  43. Phang SM, Yeong HY, Lim PE. The seaweed resources of Malaysia. Bot Mar. 2019;62:265-73. https://doi.org/10.1515/bot-2018-0067
  44. Pintatum A, Maneerat W, Logie E, Tuenter E, Sakavitsi ME, Pieters L, et al. In vitro anti-inflammatory, anti-oxidant, and cytotoxic activities of four Curcuma species and the isolation of compounds from Curcuma aromatica rhizome. Biomolecules. 2020;10:799. https://doi.org/10.3390/biom10050799
  45. Reid T, Kashangura C, Chidewe C, Benhura MA, Stray-Pedersen B, Mduluza T, et al. Characterization of anti-Salmonella typhi compounds from medicinal mushroom extracts from Zimbabwe. Int J Med Mushrooms. 2019;21:713-24. https://doi.org/10.1615/intjmedmushrooms.v21.i7.80
  46. Riese U, Ziegler E, Hamburger M. Militarinone A induces differentiation in PC12 cells via MAP and Akt kinase signal transduction pathways. FEBS Lett. 2004;577:455-9. https://doi.org/10.1016/j.febslet.2004.10.045
  47. Ruangritchankul S, Chantharit P, Srisuma S, Gray LC. Adverse drug reactions of acetylcholinesterase inhibitors in older people living with dementia: a comprehensive literature review. Ther Clin Risk Manag. 2021;17:927-49. https://doi.org/10.2147/TCRM.S323387
  48. Schmidt K, Gunther W, Stoyanova S, Schubert B, Li Z, Hamburger M, et al. Militarinone A, a neurotrophic pyridone alkaloid from Paecilomyces militaris. Org Lett. 2002;4:197-9. https://doi.org/10.1021/ol016920j
  49. Schroder P, Forster T, Kleine S, Becker C, Richters A, Ziegler S, et al. Neuritogenic militarinone-inspired 4-hydroxypyridones target the stress pathway kinase MAP4K4. Angew Chem Int Ed Engl. 2015;54:12398-403. https://doi.org/10.1002/anie.201501515
  50. Senevirathne M, Ahn CB, Je JY. Enzymatic extracts from edible red algae, Porphyra tenera, and their antioxidant, anti-acetylcholinesterase, and anti-inflammatory activities. Food Sci Biotechnol. 2010;19:1551-7. https://doi.org/10.1007/s10068-010-0220-x
  51. Silverthorn DU. Neruons: Cellular and network properties. In: Human Physiology: An Integrated Approach. London: Pearson; 2016. p. 277-84.
  52. Suganthy N, Karutha Pandian S, Pandima Devi K. Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci Lett. 2010;468:216-9. https://doi.org/10.1016/j.neulet.2009.11.001
  53. Suzuki J, Iwai M, Mogi M, Oshita A, Yoshii T, Higaki J, et al. Eplerenone with valsartan effectively reduces atherosclerotic lesion by attenuation of oxidative stress and inflammation. Arterioscler Thromb Vasc Biol. 2006;26:917-21. https://doi.org/10.1161/01.ATV.0000204635.75748.0f
  54. Syad AN, Rajamohamed BS, Shunmugaiah KP, Kasi PD. Neuroprotective effect of the marine macroalga Gelidiella acerosa: identification of active compounds through bioactivity-guided fractionation. Pharm Biol. 2016;54:2073-81. https://doi.org/10.3109/13880209.2016.1145700
  55. Syad AN, Shunmugiah KP, Kasi PD. Assessment of anticholinesterase activity of Gelidiella acerosa : implications for its therapeutic potential against Alzheimer's disease. Evid Based Complement Alternat Med. 2012;2012:497242.
  56. Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K. Prediction of cyclooxygenase inhibitory activity of Curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull. 2008;56:936-40. https://doi.org/10.1248/cpb.56.936
  57. Tsuno N. Donepezil in the treatment of patients with Alzheimer's disease. Expert Rev Neurother. 2009;9:591-8. https://doi.org/10.1586/ern.09.23
  58. Vecchiola A, Fuentes CA, Solar I, Lagos CF, Opazo MC, Munoz-Durango N, et al. Eplerenone implantation improved adipose dysfunction averting RAAS activation and cell division. Front Endocrinol. 2020;11:223. https://doi.org/10.3389/fendo.2020.00223
  59. Wada T, Ishikawa A, Watanabe E, Nakamura Y, Aruga Y, Hasegawa H, et al. Eplerenone prevented obesity-induced inflammasome activation and glucose intolerance. J Endocrinol. 2017;235:179-91. https://doi.org/10.1530/JOE-17-0351
  60. Wang B, Han J, Xu W, Chen Y, Liu, H. Production of bioactive cyathane diterpenes by a bird's nest fungus Cyathus gansuensis growing on cooked rice. Food Chem. 2014;152:169-76. https://doi.org/10.1016/j.foodchem.2013.11.137
  61. Wang X, Zhu Y, Wang S, Wang Z, Sun H, He Y, et al. Effects of eplerenone on cerebral aldosterone levels and brain lesions in spontaneously hypertensive rats. Clin Exp Hypertens. 2020;42:531-8. https://doi.org/10.1080/10641963.2020.1723615
  62. World Health Organisation. Dementia. 2021 [cited 2021 Aug 21]. https://www.who.int/news-room/fact-sheets/detail/dementia
  63. Wu TS, Shi LS, Wang JJ, Iou SC, Chang HC, Chen YP, et al. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J Chin Chem Soc. 2003;50:171-8. https://doi.org/10.1002/jccs.200300024
  64. Xiao J, Shimada M, Liu W, Hu D, Matsumori A. Anti-inflammatory effects of eplerenone on viral myocarditis. Eur J Heart Fail. 2009;11:349-53. https://doi.org/10.1093/eurjhf/hfp023
  65. Yoon NY, Chung HY, Kim HR, Choi JE. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci. 2008;74:200-7. https://doi.org/10.1111/j.1444-2906.2007.01511.x
  66. Yoon NY, Lee SH, Yong-Li, Kim SK. Phlorotannins from Ishige okamurae and their acetyl- and butyrylcholinesterase inhibitory effects. J Funct Foods. 2009;1:331-5. https://doi.org/10.1016/j.jff.2009.07.002
  67. Yow YY, Lim PE, Phang SM. Assessing the use of mitochondrial cox1 gene and cox2-3 spacer for genetic diversity study of Malaysian Gracilaria changii (Gracilariaceae, Rhodophyta) from Peninsular Malaysia. J Appl Phycol. 2013;25:831-8. https://doi.org/10.1007/s10811-012-9942-x