DOI QR코드

DOI QR Code

Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: a pilot clinical study

  • McCawley, Thomas K. (McCawley Center for Laser Periodontics and Implants) ;
  • McCawley, Mark N. (McCawley Center for Laser Periodontics and Implants) ;
  • Rams, Thomas E. (Department of Periodontology and Oral Implantology, Temple University School of Dentistry)
  • Received : 2021.02.04
  • Accepted : 2021.07.21
  • Published : 2022.02.28

Abstract

Purpose: This pilot study assessed the immediate in vivo effect of high peak pulse power neodymium-doped yttrium aluminum garnet (Nd:YAG) laser monotherapy on selected red/orange complex periodontal pathogens in deep human periodontal pockets. Methods: Twelve adults with severe periodontitis were treated with the Laser-Assisted New Attachment Procedure (LANAP®) surgical protocol, wherein a free-running, digitally pulsed, Nd:YAG dental laser was used as the initial therapeutic step before mechanical root debridement. Using a flexible optical fiber in a handpiece, Nd:YAG laser energy, at a density of 196 J/cm2 and a high peak pulse power of 1,333 W/pulse, was directed parallel to untreated tooth root surfaces in sequential coronal-apical passes to clinical periodontal probing depths, for a total applied energy dose of approximately 8-12 joules per millimeter of periodontal probing depth at each periodontal site. Subgingival biofilm specimens were collected from each patient before and immediately after Nd:YAG laser monotherapy from periodontal pockets exhibiting ≥6 mm probing depths and bleeding on probing. Selected red/orange complex periodontal pathogens (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Fusobacterium nucleatum, Parvimonas micra, and Campylobacter species) were quantified in the subgingival samples using established anaerobic culture techniques. Results: All immediate post-treatment subgingival biofilm specimens continued to yield microbial growth after Nd:YAG laser monotherapy. The mean levels of total cultivable red/orange complex periodontal pathogens per patient significantly decreased from 12.0% pretreatment to 4.9% (a 59.2% decrease) immediately after Nd:YAG laser monotherapy, with 3 (25%) patients rendered culture-negative for all evaluated red/orange complex periodontal pathogens. Conclusions: High peak pulse power Nd:YAG laser monotherapy, used as the initial step in the LANAP® surgical protocol on mature subgingival biofilms, immediately induced significant reductions of nearly 60% in the mean total cultivable red/orange complex periodontal pathogen proportions per patient prior to mechanical root instrumentation and the rest of the LANAP® surgical protocol.

Keywords

Acknowledgement

This study was personally funded by Dr. Thomas K. McCawley. LANAP® is patented and a registered trademark of Millennium Dental Technologies, Inc.

References

  1. Yukna RA, Carr RL, Evans GH. Histologic evaluation of an Nd:YAG laser-assisted new attachment procedure in humans. Int J Periodontics Restorative Dent 2007;27:577-87.
  2. Nevins ML, Camelo M, Schupbach P, Kim SW, Kim DM, Nevins M. Human clinical and histologic evaluation of laser-assisted new attachment procedure. Int J Periodontics Restorative Dent 2012;32:497-507.
  3. Nevins M, Kim SW, Camelo M, Martin IS, Kim D, Nevins M. A prospective 9-month human clinical evaluation of Laser-Assisted New Attachment Procedure (LANAP) therapy. Int J Periodontics Restorative Dent 2014;34:21-7. https://doi.org/10.11607/prd.1848
  4. Brown IS. Current advances in the use of lasers in periodontal therapy: a laser-assisted new attachment procedure case series. Clin Adv Periodontics 2013;3:96-104. https://doi.org/10.1902/cap.2013.120087
  5. Mizutani K, Aoki A, Coluzzi D, Yukna R, Wang CY, Pavlic V, et al. Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol 2000 2016;71:185-212. https://doi.org/10.1111/prd.12123
  6. Suzuki JB, Sullivan AJ Jr. Letter to the editor: re: is there clinical benefit from using a diode or neodymium:yttrium-aluminum-garnet laser in the treatment of periodontitis? J Periodontol 2017;88:821-2. https://doi.org/10.1902/jop.2017.170073
  7. Coluzzi DJ. Laser and light fundamentals. In: Coluzzi DJ, Parker SPA, editors. Lasers in dentistry-current concepts. Cham: Springer International Publishing AG; 2017. p.17-28.
  8. Gold SI, Vilardi MA. Pulsed laser beam effects on gingiva. J Clin Periodontol 1994;21:391-6. https://doi.org/10.1111/j.1600-051X.1994.tb00735.x
  9. Ting CC, Fukuda M, Watanabe T, Sanaoka A, Mitani A, Noguchi T. Morphological alterations of periodontal pocket epithelium following Nd:YAG laser irradiation. Photomed Laser Surg 2014;32:649-57. https://doi.org/10.1089/pho.2014.3793
  10. Tseng P, Liew V. The potential application of a Nd:YAG dental laser in periodontal treatment. Periodontology (Australia) 1990;11:20-2.
  11. Losin KJ, Yukna R, Powell C, Tippets J, Font K. Evaluation of different dental lasers' ability to congeal pooled blood: an in vitro study. Int J Periodontics Restorative Dent 2020;40:e147-54. https://doi.org/10.11607/prd.4773
  12. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol 1998;25:134-44. https://doi.org/10.1111/j.1600-051X.1998.tb02419.x
  13. McCawley TK, McCawley MN, Rams TE. Immediate effects of Laser-Assisted New Attachment Procedure (LANAP) on human periodontitis microbiota. J Int Acad Periodontol 2018;20:163-71.
  14. Graetz C, Mann L, Krois J, Salzer S, Kahl M, Springer C, et al. Comparison of periodontitis patients' classification in the 2018 versus 1999 classification. J Clin Periodontol 2019;46:908-17. https://doi.org/10.1111/jcpe.13157
  15. Harris DM. Dosimetry for laser sulcular debridement. Lasers Surg Med 2003;33:217-8. https://doi.org/10.1002/lsm.10231
  16. Dahlen G, Pipattanagovit P, Rosling B, Moller AJR. A comparison of two transport media for saliva and subgingival samples. Oral Microbiol Immunol 1993;8:375-82. https://doi.org/10.1111/j.1399-302X.1993.tb00614.x
  17. Rams TE, Listgarten MA, Slots J. Utility of 5 major putative periodontal pathogens and selected clinical parameters to predict periodontal breakdown in patients on maintenance care. J Clin Periodontol 1996;23:346-54. https://doi.org/10.1111/j.1600-051X.1996.tb00556.x
  18. Tabanella G, Nowzari H, Slots J. Clinical and microbiological determinants of ailing dental implants. Clin Implant Dent Relat Res 2009;11:24-36. https://doi.org/10.1111/j.1708-8208.2008.00088.x
  19. Cohen LR. Comparison of the results of microbiological samples from the same pocket analyzed by three different laboratories [master's thesis]. Gainesville (FL): University of Florida; 2001.
  20. Rams TE, Sautter JD, Getreu A, van Winkelhoff AJ. Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Microb Pathog 2016;94:112-6. https://doi.org/10.1016/j.micpath.2016.01.021
  21. Rams TE, Sautter JD, Hsiao CY, van Winkelhoff AJ. Phenotypic identification of periodontal Prevotella intermedia/nigrescens group isolates validated by MALDI-TOF mass spectrometry. Anaerobe 2018;54:201-4. https://doi.org/10.1016/j.anaerobe.2018.06.007
  22. Harris DM, Yessik M. Therapeutic ratio quantifies laser antisepsis: ablation of Porphyromonas gingivalis with dental lasers. Lasers Surg Med 2004;35:206-13. https://doi.org/10.1002/lsm.20086
  23. Kranendonk A, van der Reijden W, van Winkelhoff A, van der Weijden G. The bactericidal effect of a Genius Nd:YAG laser. Int J Dent Hyg 2010;8:63-7. https://doi.org/10.1111/j.1601-5037.2009.00375.x
  24. Harris DM, Jacques SL, Darveau R. The black bug myth: selective photodestruction of pigmented pathogens. Lasers Surg Med 2016;48:706-14. https://doi.org/10.1002/lsm.22545
  25. Harris DM, Reinisch L. Selective photoantisepsis. Lasers Surg Med 2016;48:763-73. https://doi.org/10.1002/lsm.22568
  26. Rams TE, van Winkelhoff AJ. Introduction to clinical microbiology for the general dentist. Dent Clin North Am 2017;61:179-97. https://doi.org/10.1016/j.cden.2016.11.001
  27. Tucker D, Cobb CM, Rapley JW, Killoy WJ. Morphologic changes following in vitro CO2 laser treatment of calculus-ladened root surfaces. Lasers Surg Med 1996;18:150-6. https://doi.org/10.1002/(SICI)1096-9101(1996)18:2<150::AID-LSM4>3.0.CO;2-R
  28. Cobb CM, Blue MS, Beaini NE, Umaki MR, Satheesh KM. Diode laser offers minimal benefit for periodontal therapy. Compend Contin Educ Dent 2012;33:e67-73.
  29. Cobb CM, McCawley TK, Killoy WJ. A preliminary study on the effects of the Nd:YAG laser on root surfaces and subgingival microflora in vivo. J Periodontol 1992;63:701-7. https://doi.org/10.1902/jop.1992.63.8.701
  30. Ben Hatit Y, Blum R, Severin C, Maquin M, Jabro MH. The effects of a pulsed Nd:YAG laser on subgingival bacterial flora and on cementum: an in vivo study. J Clin Laser Med Surg 1996;14:137-43. https://doi.org/10.1089/clm.1996.14.137
  31. Miyazaki A, Yamaguchi T, Nishikata J, Okuda K, Suda S, Orima K, et al. Effects of Nd:YAG and CO2 laser treatment and ultrasonic scaling on periodontal pockets of chronic periodontitis patients. J Periodontol 2003;74:175-80. https://doi.org/10.1902/jop.2003.74.2.175
  32. Noguchi T, Sanaoka A, Fukuda M, Suzuki S, Aoki T. Combined effects of Nd:YAG laser irradiation with local antibiotic application into periodontal pockets. J Int Acad Periodontol 2005;7:8-15.
  33. Grzech-Lesniak K, Sculean A, Gaspirc B. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: a randomized controlled clinical study. Lasers Med Sci 2018;33:1461-70. https://doi.org/10.1007/s10103-018-2491-z
  34. Radvar M, MacFarlane TW, MacKenzie D, Whitters CJ, Payne AP, Kinane DF. An evaluation of the Nd:YAG laser in periodontal pocket therapy. Br Dent J 1996;180:57-62. https://doi.org/10.1038/sj.bdj.4808976
  35. Neill ME, Mellonig JT. Clinical efficacy of the Nd:YAG laser for combination periodontitis therapy. Pract Periodontics Aesthet Dent 1997;9:1-5.
  36. de Andrade AK, Feist IS, Pannuti CM, Cai S, Zezell DM, De Micheli G. Nd:YAG laser clinical assisted in class II furcation treatment. Lasers Med Sci 2008;23:341-7. https://doi.org/10.1007/s10103-007-0482-6
  37. Slot DE, Kranendonk AA, Van der Reijden WA, van Winkelhoff AJ, Rosema NA, Schulein WH, et al. Adjunctive effect of a water-cooled Nd:YAG laser in the treatment of chronic periodontitis. J Clin Periodontol 2011;38:470-8. https://doi.org/10.1111/j.1600-051X.2010.01695.x
  38. Gomez C, Dominguez A, Garcia-Kass AI, Garcia-Nunez JA. Adjunctive Nd:YAG laser application in chronic periodontitis: clinical, immunological, and microbiological aspects. Lasers Med Sci 2011;26:453-63. https://doi.org/10.1007/s10103-010-0795-8
  39. Giannelli M, Bani D, Viti C, Tani A, Lorenzini L, Zecchi-Orlandini S, et al. Comparative evaluation of the effects of different photoablative laser irradiation protocols on the gingiva of periodontopathic patients. Photomed Laser Surg 2012;30:222-30. https://doi.org/10.1089/pho.2011.3172
  40. Cobb CM. Commentary: is there clinical benefit from using a diode or neodymium:yttrium-aluminum-garnet laser in the treatment of periodontitis? J Periodontol 2016;87:1117-31. https://doi.org/10.1902/jop.2016.160134