DOI QR코드

DOI QR Code

Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study

딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구

  • Su Min Ha (Department of Radiology, Research Institute of Radiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine) ;
  • Hak Hee Kim (Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Eunhee Kang (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Bo Kyoung Seo (Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine) ;
  • Nami Choi (Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine) ;
  • Tae Hee Kim (Department of Radiology, Ajou University Hospital, Ajou University School of Medicine) ;
  • You Jin Ku (Department of Radiology, Catholic Kwangdong University International St. Mary's Hospital, Catholic Kwandong University) ;
  • Jong Chul Ye (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 하수민 (중앙대학교 의과대학 중앙대학교병원 영상의학과) ;
  • 김학희 (울산대학교 의과대학 서울아산병원 영상의학과) ;
  • 강은희 (한국과학기술원 바이오 및 뇌공학과) ;
  • 서보경 (고려대학교 의과대학 고려대학교 안산병원 영상의학과) ;
  • 최나미 (건국대학교 의과대학 건국대학교병원 영상의학과) ;
  • 김태희 (아주대학교 의과대학 아주대학교병원 영상의학과) ;
  • 구유진 (가톨릭관동대학교 국제성모병원 영상의학과) ;
  • 예종철 (한국과학기술원 바이오 및 뇌공학과)
  • Received : 2020.08.19
  • Accepted : 2021.07.23
  • Published : 2022.03.01

Abstract

Purpose To develop a denoising convolutional neural network-based image processing technique and investigate its efficacy in diagnosing breast cancer using low-dose mammography imaging. Materials and Methods A total of 6 breast radiologists were included in this prospective study. All radiologists independently evaluated low-dose images for lesion detection and rated them for diagnostic quality using a qualitative scale. After application of the denoising network, the same radiologists evaluated lesion detectability and image quality. For clinical application, a consensus on lesion type and localization on preoperative mammographic examinations of breast cancer patients was reached after discussion. Thereafter, coded low-dose, reconstructed full-dose, and full-dose images were presented and assessed in a random order. Results Lesions on 40% reconstructed full-dose images were better perceived when compared with low-dose images of mastectomy specimens as a reference. In clinical application, as compared to 40% reconstructed images, higher values were given on full-dose images for resolution (p < 0.001); diagnostic quality for calcifications (p < 0.001); and for masses, asymmetry, or architectural distortion (p = 0.037). The 40% reconstructed images showed comparable values to 100% full-dose images for overall quality (p = 0.547), lesion visibility (p = 0.120), and contrast (p = 0.083), without significant differences. Conclusion Effective denoising and image reconstruction processing techniques can enable breast cancer diagnosis with substantial radiation dose reduction.

목적 깊은 컨볼루션 신경망 기법을 결합한 영상 잡음 제거 알고리즘을 개발하고 이를 응용하여 저선량 유방 촬영 영상으로 유방암을 진단하는 데 그 효능을 조사하고자 한다. 대상과 방법 6명의 유방 영상 전문의가 전향적 연구에 참여하였다. 모든 영상 전문의는 병변 감지를 위해 저선량 영상을 독립적으로 평가하고 정성적 척도를 사용하여 진단 품질을 평가하였다. 영상 잡음 제거 알고리즘을 적용한 후, 동일한 영상 전문의가 병변 감지 가능성과 영상 품질에 대한 평가를 하였다. 임상 적용을 위해 동일한 영상 전문의가 병변 유형과 위치에 대한 합의 결정 후, 저선량 영상, 재구성된 영상, 기존 선량 영상을 무작위 순서로 제시하여 평가하였다. 결과 전 절제 표본의 저선량 영상을 참조로 40% 재구성된 영상에서 병변이 더 잘 인식되었다. 임상 적용단계에서 40% 재구성된 영상과 비교하여, 기존 선량 영상이 해상도(p < 0.001), 석회에 대한 진단 품질(p < 0.001), 유방 종괴, 비대칭, 구조왜곡의 진단 품질(p = 0.037)에 대해 더 높은 평균값을 보였다. 40% 재구성된 영상은 100% 영상과 비교 시 전반적 화질(p = 0.547), 병변의 가시성(p = 0.120), 대조도(p = 0.083)에서 비슷한 성적을 보였으며 유의미한 차이도 보이지 않았다. 결론 깊은 컨볼루션 신경망 기법을 결합한 효과적인 잡음 제거 및 영상 재구성 처리 알고리즘은 유방 촬영의 상당한 선량 감소를 위한 길을 열어 유방암 진단을 가능하게 할 것이다.

Keywords

Acknowledgement

This research was supported by Korean Society of Breast Imaging & Korean Society for Breast Screening (KSBI&KSFBS-2017-03).

References

  1. Tang J, Rangayyan RM, Xu J, El Naqa I, Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 2009;13:236-251 
  2. National Research Council. Committee to assess health risks from exposure to low level of ionizing radiation. Health risks from exposure to low levels of ionizing radiation. Washington DC: National Academies Press 2006 
  3. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 2014;311:2499-2507 
  4. Yaffe MJ, Mainprize JG. Risk of radiation-induced breast cancer from mammographic screening. Radiology 2011;258:98-105 
  5. Svahn T, Hemdal B, Ruschin M, Chakraborty DP, Andersson I, Tingberg A, et al. Dose reduction and its influence on diagnostic accuracy and radiation risk in digital mammography: an observer performance study using an anthropomorphic breast phantom. Br J Radiol 2007;80:557-562 
  6. Yakabe M, Sakai S, Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, et al. Effect of dose reduction on the ability of digital mammography to detect simulated microcalcifications. J Digit Imaging 2010;23:520-526 
  7. Samei E, Saunders RS Jr, Baker JA, Delong DM. Digital mammography: effects of reduced radiation dose on diagnostic performance. Radiology 2007;243:396-404 
  8. Sun M, Star-Lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol 2010;55:6695-6720 
  9. Mencattini A, Salmeri M, Lojacono R, Frigerio M, Caselli F. Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans Instrum Meas 2008;57:1422-1430 
  10. Gorgel P, Sertbas A, Ucan ON. A wavelet-based mammographic image denoising and enhancement with homomorphic filtering. J Med Syst 2010;34:993-1002 
  11. Vikhe PS, Thool VR. Contrast enhancement in mammograms using homomorphic filter technique. Proceedings of the 2016 International Conference on Signal and Information Processing (IConSIP); 2016 October 6-8; Nanded, India: IEEE; 2016:1-5 
  12. Golkov V, Dosovitskiy A, Sperl JI, Menzel MI, Czisch M, Samann P, et al. Q-space deep learning: twelve-fold shorter and model-free diffusion MRI scans. IEEE Trans Med Imaging 2016;35:1344-1351 
  13. Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492 
  14. Sun Y, Liu X, Cong P, Li L, Zhao Z. Digital radiography image denoising using a generative adversarial network. J Xray Sci Technol 2018;26:523-534 
  15. Liu J, Zarshenas A, Qadir A, Wei Z, Yang L, Fajardo L, et al. Radiation dose reduction in digital breast tomosynthesis (DBT) by means of deep-learning-based supervised image processing. Proceedings of the SPIE 10574, Medical Imaging: image processing; 2018 Feb 10-15; Houston, TX, USA: SPIE; 2018 
  16. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13:600-612 
  17. American College of Radiology. ACR BI-RADS breast imaging and reporting data system: breast imaging atlas. 4th ed. Reston: American College of Radiology 2003 
  18. Nystrom L, Andersson I, Bjurstam N, Frisell J, Nordenskjold B, Rutqvist LE. Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 2002;359:909-919 
  19. Parker MS, Hui FK, Camacho MA, Chung JK, Broga DW, Sethi NN. Female breast radiation exposure during CT pulmonary angiography. AJR Am J Roentgenol 2005;185:1228-1233 
  20. Doody MM, Lonstein JE, Stovall M, Hacker DG, Luckyanov N, Land CE. Breast cancer mortality after diagnostic radiography: findings from the U.S. Scoliosis Cohort Study. Spine (Phila Pa 1976) 2000;25:2052-2063 
  21. Law J, Faulkner K. Two-view screening and extending the age range: the balance of benefit and risk. Br J Radiol 2002;75:889-894 
  22. Law J, Faulkner K. Concerning the relationship between benefit and radiation risk, and cancers detected and induced, in a breast screening programme. Br J Radiol 2002;75:678-684 
  23. Hemdal B, Bay TH, Bengtsson G, Gangeskar L, Martinsen AC, Pedersen K, et al. Comparison of screen-film, imaging plate and direct digital mammography with CD phantoms. In Peitgen HO, ed. Digital mammography. Berlin, Heidelberg: Springer 2003:105-107 
  24. Gennaro G, Katz L, Souchay H, Alberelli C, di Maggio C. Are phantoms useful for predicting the potential of dose reduction in full-field digital mammography? Phys Med Biol 2005;50:1851-1870 
  25. Huda W, Sajewicz AM, Ogden KM, Scalzetti EM, Dance DR. How good is the ACR accreditation phantom for assessing image quality in digital mammography? Acad Radiol 2002;9:764-772 
  26. Hemdal B, Andersson I, Grahn A, Hakansson M, Ruschin M, Thilander-Klang A, et al. Can the average glandular dose in routine digital mammography screening be reduced? A pilot study using revised image quality criteria. Radiat Prot Dosimetry 2005;114:383-388 
  27. Cole EB, Pisano ED, Zeng D, Muller K, Aylward SR, Park S, et al. The effects of gray scale image processing on digital mammography interpretation performance. Acad Radiol 2005;12:585-595 
  28. Zanca F, Jacobs J, Van Ongeval C, Claus F, Celis V, Geniets C, et al. Evaluation of clinical image processing algorithms used in digital mammography. Med Phys 2009;36:765-775 
  29. Uematsu T. Detection of masses and calcifications by soft-copy reading: comparison of two postprocessing algorithms for full-field digital mammography. Jpn J Radiol 2009;27:168-175 
  30. Cole EB, Pisano ED, Kistner EO, Muller KE, Brown ME, Feig SA, et al. Diagnostic accuracy of digital mammography in patients with dense breasts who underwent problem-solving mammography: effects of image processing and lesion type. Radiology 2003;226:153-160 
  31. Chatterjee P, Milanfar P. Is denoising dead? IEEE Trans Image Process 2010;19:895-911 
  32. Cesarelli M, Bifulco P, Cerciello T, Romano M, Paura L. X-ray fluoroscopy noise modeling for filter design. Int J Comput Assist Radiol Surg 2013;8:269-278 
  33. Chan HP, Lo SC, Sahiner B, Lam KL, Helvie MA. Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network. Med Phys 1995;22:1555-1567 
  34. Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 2016;43:6654 
  35. Bernhardt P, Mertelmeier T, Hoheisel M. X-ray spectrum optimization of full-field digital mammography: simulation and phantom study. Med Phys 2006;33:4337-4349 
  36. Riedl CC, Jaromi S, Floery D, Pfarl G, Fuchsjaeger MH, Helbich TH. Potential of dose reduction after marker placement with full-field digital mammography. Invest Radiol 2005;40:343-348 
  37. Chesters MS. Human visual perception and ROC methodology in medical imaging. Phys Med Biol 1992;37:1433-1476