In this study, the polyurethane acrylates (PUA) resin with good adhesive and flexibility for adhesive for shoes and clothing were synthesized using that poly(tetramethylene adiphate glycol) (PTAd), poly(tetramethylene ether glycol) (PTMG) as polyester polyol and polyether polyol respectively, including 4,4'-methylene diphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), 1,4-butandiol (1,4-BD), 2-hydroxyethyl methacrylate (2-HEMA) and dibutyl amine (DBA). The effect of polyol blend in the polyurethane acrylate on thermal and mechanical properties, adhesion strength and flexural strength were studied. The glass transition temperature (Tg) of PUA was confirmed in range of -70~-40 ℃. In addition, the glass transition temperature (Tg), decomposition temperature (Td), tensile strength adhesion strength and heat resistance were increased as increasing of PTAd amount while the elongation, water resistance and flexural properties were decreased. The synthesized polyurethane acrylate with 5:5 ratio of PTAd and PTMG indicated the highest adhesion strength and flexural properties.
본 연구에서는 신발 및 의류용 접착제로 접착력과 굴곡성이 우수한 폴리우레탄 아크릴레이트 수지를 합성하기 위하여 폴리에스테르 폴리올인 poly(tetramethylene adiphate glycol) (PTAd)와 폴리에테르 폴리올인 poly(tetramethylene ether glycol) (PTMG)를 4,4'-methylene diphenyl diisocyanate (MDI), isophorone diisocyanate (IPDI), 1,4-butandiol (1,4-BD), 2-ydroxyethyl methacrylate (2-HEMA), dibutyl amine (DBA)와 함께 사용하여 폴리우레탄 아크릴레이트를 합성하였으며, 폴리올을 병용한 폴리우레탄 아크릴레이트의 열적·기계적 특성, 접착력 및 굴곡성을 검토하였다. 합성된 폴리우레탄 아크릴레이트의 유리전이온도는 -70~-40 ℃ 범위로 확인되었으며, PTAd 함량이 증가함에 따라 유리전이온도, 분해온도, 인장강도, 접착력 및 내열성이 증가하였고 반대로 신장률, 내수성 및 굴곡성은 감소되었다. 합성된 폴리우레탄 아크릴레이트는 PTAd와 PTMG 비율이 5:5일 때 높은 접착력과 굴곡성을 나타내었다.
K. H. Jin and U. R. Cho, Elastomers and Composites, 49, 31 (2014).
H. J. Kim, Rubber Technology, 4, 77 (2003).
Mark F. Sonnenschein, "Polyurethanes (Science, Technology, Markets, and Trends)", 1, 10, JohnWile&Sonslnc (2014).
S. M. Kim, N. S. Kwak, Y. K. Yang, B. K. Yim, B. Y. Park, and T. S. Hwang, Polymer (Korea), 29, 253 (2005).
C. Y. Park, Elastomers and Composites, 49, 245 (2014).
S. Li, Z, Liu, L. Hou, Y. Chen, T. Xu. Progress in Organic Coatings. 141, (2020).
K. J. Ryu and C. Y. Park, Journal of Environmental Science International, 23, 1909 (2011).
W. C. Choi, W. K. Lee, C. S. Ha. Mol. Cryst. Liq. Cryst. Sci. Technol. 660, 104 (2018).
B. A. Ann, J. A. Jung, J. M. Lee, H. M. Jeong. Polymer(korea), 41, 790 (2017).
R. Schwalm, L. Haussling, W. Reich, E. Beck, P. Enenkel, and K. Menzel, Prog. Org. Coat., 32, 191 (1997).
M. Braithwaite, S. Davidson, R. Holam, C. Lpwe, P. K. T. Oldring, M. S. Salim, and C. Wall, "Chemistry & Technology of UV & EB Formulation For Coatings, Ink & Paint", ed. P. K. T. Oldrin, SITA Technology, London, (1983).
S. Abouzahr, G. L. Wilkes. J. Appl. Polym. Sci. 292, 695 (1984).
J. M. Cheon, B. Y. Jeong, S. T. Oh, T. K. Kim, J. H. Chun. Journal of Adhesion and Interface. 11, 1 (2010).
D. H. Kim, I. Chung, G. N. Kim. Journal of Adhesion and Interface. 11, 1 (2010).
L. Febri, A. Pegoretti, C. Gavazza, A. Penati, J. Appl. Polym. Sci. 81, 1216 (2001).