DOI QR코드

DOI QR Code

핵동력 우주추진 기술개발 동향

State of the Art for Space Propulsion Employing Nuclear Power

  • Hong Yeong Park (School of Mechanical Engineering, Graduate School, Pukyong National University) ;
  • Yun Hyeong Kang (School of Mechanical Engineering, Graduate School, Pukyong National University) ;
  • Jeong Soo Kim (School of Mechanical Engineering, Graduate School, Pukyong National University) ;
  • Soo Seok Yang (Aeropropulsion Research Division, Korea Aerospace Research Institute)
  • 투고 : 2022.10.24
  • 심사 : 2022.11.22
  • 발행 : 2022.12.31

초록

핵추진 시스템의 개념 및 특징들을 소개하고 해외 핵동력 우주추진 기술개발 동향을 정리하였다. 핵추진 원료로 사용되는 우라늄은 비에너지가 매우 높아 기존 화학추진방식 대비 우수한 비추력 성능을 내고, 탑재되는 연료의 양을 줄일 수 있어 장거리 탐사 시 매우 유리한 이점을 가지고 있다. 이러한 이유로, 최근 우주개발 선도국에서 핵추진 기술 연구에 박차를 가하고 있는바, 우주개발 경쟁에서의 우위를 점하기 위해서도 핵동력을 이용한 추진기관의 개발이 반드시 필요하다고 판단된다.

In this paper, the concept and characteristics of the nuclear propulsion system were introduced and the state of the art for the nuclear-powered space propulsion in abroad were summarized. Since uranium used in nuclear propulsion has a very high energy density per unit mass, it has exceptional specific impulse performance compared to the existing chemical propulsion method and can reduce the amount of fuel loaded, thereby having advantage for long-distance exploration. For this reason, advanced countries in space development are recently spurring to the research of nuclear propulsion technology, and it is judged that the development of a propulsion engine using nuclear power is absolutely necessary in order to gain an competitive edge on the space development.

키워드

과제정보

본 논문은 과학기술정보통신부의 재원으로 한국연구재단 미래우주교육센터(2022M1A3C2085070)의 지원을 받아 수행된 연구결과임.

참고문헌

  1. Kim, S.K., Kim, H.L. and Cho, H.J., "Status and Plan of Development of High Specific Impulse Ion Thruster for Deep Space Exploration," 57th KSPE Fall Conference, Busan, Korea, pp. 1366-1367, 2021.
  2. "Nuclear Thermal Propulsion (NTP)," retrieved 22 Feb. 2022 from https://www.nasa.gov/directorates/spacetech/game_changing_development/projects/NTP.
  3. Gabrielli, R.A. and Herdrich, G., "Review of Nuclear Thermal Propulsion Systems," Progress in Aerospace Sciences, Vol. 79, pp. 92-113, 2015. https://doi.org/10.1016/j.paerosci.2015.09.001
  4. Robbins, W.H. and Finger, H.B., "An Historical Perspective of the NERVA Nuclear Rocket Engine Technology Program," NASA CR-187154, 1991.
  5. Gerrish, H.P., "Nuclear Thermal Propulsion Ground Test History," 2014 Nuclear Emerging Technologies for Space Conference, Pearlington, M.S., U.S.A., Feb. 2014.
  6. Turner, Martin J.L., Rocket and Spacecraft Propulsion, Principles, Practice and New developments, 2nd ed., Praxis Publishing Ltd, Chichester, U.K., Ch. 7, 2005.
  7. Mitchell, S. and Johnson, L., "STMD: Nuclear Thermal Propulsion Update," MSFC E-DAA-TN68083, 2019.
  8. McLaren, R. and Ragheb, M., "Nuclear Propulsion choices for space exploration," 1st International Nuclear and Renewable Energy Conference (INREC10), Amman, Jordan, pp. 1-7, Mar. 2010.
  9. Koenig, D.R., "Experience gained from the Space Nuclear Rocket Program (Rover)," LA-10062-H UC-33, 1986.
  10. Finseth, J.L., "Rover Nuclear Rocket Engine Program: Overview of Rover Engine Tests," NASA CR-184270, 2013.
  11. Proust, E., "Lecture Series on NUCLEAR SPACE POWER & PROPULSION SYSTEMS, -2- Nuclear Thermal Propulsion Systems," hal-03147500, 2021.
  12. Vadim, Z. and Vladimir, P., "Russian Nuclear Rocket Engine Design for Mars Exploration," Journal of the Tsinghua Science and Technology, Vol. 12, No. 3, pp. 256-260, 2007. https://doi.org/10.1016/S1007-0214(07)70038-X
  13. Powell, J., Ludewig, H., Horn, F. and Lenard, R., "The Liquid Annular Reactor System(LARS) Propulsion," AIP Conference Proceedings, Vol. 217, No. 2, pp. 618-624, 1991.
  14. Ragsdale, R.G., "Status of open-cycle gas-core reactor project through 1970," NASA TM X-2259, 1971.
  15. Bauer, H.E. and Mc Lafferty, G.H., "Studies of Specific Nuclear Light Bulb And Open-Cycle Vortex Stabilized Gaseous Nuclear Rocket Engines," NASA CR-1030, 1968.
  16. Latham, T., "Nuclear light bulb," Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop, Cleveland, U.S.A., pp. 373-384, 1990.
  17. Braun R. et al, Space Nuclear Propulsion for Human Mars Exploration, The National Academies Press, Washington D.C., U.S.A., Ch. 3, 2021.
  18. "Tested and Analyzed Fuel Form Candidates for Nuclear Thermal Propulsion Applications," retrieved 8 Sep. 2022 from https://trace.tennessee.edu/cgi/viewcontent.cgi?article=1004&context=utne_reports.
  19. VanHooser, K.P. and Bradley, D.P., "Space Shuttle Main Engine - The Relentless Pursuit of Improvement," AIAA SPACE 2011 Conference & Exposition, CA., U.S.A., AIAA 2011-7159, Sep. 2011.
  20. Finseth, J.L., "Overview of Rover Engine Tests Final Report," NASA CR-184270, 1991.
  21. Fiehler, D., Dougherty, R. and Manzella, D., "Electric Propulsion System Modeling for the Proposed Prometheus 1 Mission," 41th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Arizona, U.S.A., AIAA 2005-3891, May 2005.
  22. Daniel, L.B., Brian, E.B. and James, M.H., "Air Force Research Laboratory High Power Electric Propulsion Technology Development," 2010 IEEE Aerospace Conference, Montana, U.S.A., pp. 1-9, Mar. 2010.
  23. Kim, H., Kim, S.H. and Won, S.H., "Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 6, pp. 95-108, 2019.
  24. "The VASIMR® Engine," retrieved 8 Sep. 2022 from https://www.adastrarocket.com/our-engine/.
  25. Voss, S.S., "SNAP (Space Nuclear Auxiliary Power) Reactor Overview," AFWL TN-84-14, 1984.
  26. William, R.C., SNAP NUCLEAR SPACE REACTORS, USAEC Division of Technical Information Extension, Tennessee, U.S.A., pp. 5-7, 1966.
  27. Magee, P.M., Dufoe, G.E. and Gordon, J.D., "SNAP 10A reactor thermal performance," NAA-SR-9903, 1964.
  28. Betancourta, M.L.R., Bogel, E., Marcus Collier-Wright, M., Wilcox, J.L. and Kaplana, P.A., "Comparative Overview of Nuclear Electric Propulsion Programs and Concepts," ASCEND 2021 conference, N.V., U.S.A., AIAA 2021-4075, Nov. 2021.
  29. Goebel, D.M., Katz, I., Ziemer, J., Brophy, J.R., Polk, J.E. and Johnson, L., "Electric Propulsion Research and Development at JPL," 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Arizona, U.S.A., AIAA 2005-3535, Jul. 2005.
  30. "Radioisotope Thermal Rocket: The Mars Hopper Concept," retrieved 22 Fab. 2022 from http://large.stanford.edu/courses/2014/ph241/allen2/, 2015.
  31. ROSEN, S., "Development of a radioisotope-fueled thruster for satellite propulsion," 8th Joint Propulsion Specialist Conference, L.A., U.S.A., AIAA 1972-1066, Nov. 1972.
  32. Holcomb, L.B., "Satellite AuxiliaryPropulsion Selection Techniques," NASA CR-110403, 1971.
  33. Nezgoda, E.L., "Radioisotope Propulsion Technology Program(POODLE). Volume V. Simulation of High-Temperature Radioisotope Heat Source. Final Report," STL-517-0049, 1967.
  34. Schmidta, G.R., Manzellaa, D.H., Kamhawia, H., Kremica, T., Olesona, S.R., Dankanichb, J.W. and Dudzinski, L.A., "Radioisotope electric propulsion (REP): A near-term approach to nuclear propulsion," Acta Astronautica, Vol. 66, No. 3, pp. 510-507, 2010.
  35. Cassady, R.J., Frisbee, R.H., Gilland, J.H., Houts, M.G., LaPointe, M.R., Maresse-Reading, C.M., Oleson, S.R., Polk, J.E., Russell, D. and Sengupta, A., "Recent advances in nuclear powered electric propulsion for space exploration," Energy Conversion and Management, Vol. 49, No. 3, pp. 412-435, 2008.
  36. "The Role of Nuclear Power and Nuclear Propulsion in the Peaceful Exploration of Space," retrieved 8 Sep. 2022 from https://www-pub.iaea.org/MTCD/publications/PDF/Pub1197_web.pdf.
  37. Oleson, S., Benson, S., Gefert, L., Patterson, M. and Schreiber, J., "Radioisotope Electric Propulsion for Fast Outer Planetary Orbiters," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indiana, U.S.A., AIAA-2002-3967, Jul. 2002.
  38. "FEATURED: MISSION TO MARS," retrieved 22 Apr. 2022 from https://www.bwxt.com/news/featured/mission-to-mars.
  39. "Space Nuclear" retrieved 22 Apr. 2022 from https://www.ga.com/space-systems/space-nuclear.
  40. "NTP," retrieved 18 Apr. 2022 from https://usnc.com/ntp/.
  41. "DARPA moving forward with development of nuclear powered spacecraft," retrieved 8 Sep. 2022 from https://spacenews.com/darpa-moving-forward-with-development-of-nuclear-powered-spacecraft/.
  42. "NASA Announces Nuclear Thermal Propulsion Reactor Concept Awards," retrieved 18 Apr. 2022 from https://www.nasa.gov/press-release/nasa-announces-nuclear-thermal-propulsion-reactor-concept-awards.
  43. "USNC-Tech develops deep space propulsion system," retrieved 18 Apr. 2022 from https://world-nuclear-news.org/Articles/USNC-Tech-develops-deep-space-propulsion-system.
  44. "FCM fuel," retrieved 18 Apr. 2022 from https://usnc.com/fcm-fuel/.
  45. Venneri, P. and Eades, M., "Space Nuclear Power and Propulsion at USNC-Tech," Nuclear Technology, Vol. 207, No. 6, pp. 876-881, 2021. https://doi.org/10.1080/00295450.2021.1895662
  46. "Demonstration Rocket for Agile Cislunar Operations (DRACO)," retrieved 18 Apr. 2022 from https://www.darpa.mil/program/demonstration-rocket-for-agile-cislunar-operations.
  47. "Universities study liquid-fueled nuclear thermal propulsion concept for NASA," retrieved 18 Apr. 2022 from https://www.ans.org/news/article-3752/universities-study-liquidfueled-nuclear-thermal-propulsion-concept-for-nasa/.
  48. "Russia to launch nuclear-powered spaceship to the moon, on to Venus, then Jupiter," retrieved 18 Apr. 2022 from https://thehill.com/changing-america/enrichment/artsculture/555560-russia-to-launch-nuclear-powered-spaceship-to-the/.
  49. "POWER TO EXPLORE OUR UNIVERSE," retrieved 8 Sep. 2022 from https://www.rolls-royce.com/innovation/space.aspx.
  50. "China's Nuclear-Powered Mission to Neptune," retrieved 8 Sep. 2022 from https://scitechdaily.com/chinas-nuclear-powered-mission-to-neptune/.