DOI QR코드

DOI QR Code

Apparent digestibility coefficients of animal feed ingredients for olive flounder (Paralichthys olivaceus)

  • Md Mostafizur Rahman (Aquacultural Engineering R&D Center, Dalian Ocean University) ;
  • Kang-Woong Kim (Aquafeed Research Center, National Institute of Fisheries Science) ;
  • Sang-Min Lee (Department of Aquatic Life Medicine, Gangneung-Wonju National University)
  • Received : 2022.05.30
  • Accepted : 2022.10.12
  • Published : 2022.11.30

Abstract

Apparent digestibility coefficients (ADCs) of dry matter, crude protein, crude lipid, nitrogen-free extract, energy and essential amino acids in animal-based feed ingredients were determined for olive flounder (Paralichthys olivaceus). A reference diet (RF) was formulated to contain 1.0% chromic oxide (Cr2O3) as an inert indicator. Nine test diets were formulated to contain RF and one of the feed ingredients (pollock meal [PM], jack mackerel meal [JMM], anchovy meal [AM], cod meal [CM], sardine meal [SM], sand eel meal [SEM], tuna meal [TM], meat meal [MM] and squid liver meal [SLM]) at a 7:3 ratio in each diet designated as PM, JMM, AM, CM, SM, SEM, TM, MM and SLM, respectively. Olive flounder, averaging 150 ± 8.0 g, were stocked at a density of 25 fish per tank in 400-L fiberglass tanks attached with fecal collection columns. Feces were collected from triplicate groups of fish one time a day for four weeks. Dry matter and crude protein ADCs of CM and SEM were significantly higher than the other tested ingredients. Lipid ADCs of JMM, CM and SEM were significantly higher than the other test ingredients. Energy ADCs of CM and SEM were significantly higher than that of the other tested ingredients. The availability of amino acids in CM was generally higher than the other animal protein sources. PM exhibited the lowest amino acid availability among the treatments. Interestingly, MM exhibited significantly higher nutrient digestibility than several marine-based ingredients. However, CM and SEM are seeming to be highly digestible and effective to use in olive flounder diet compared to the other tested ingredients. Overall, the results of this study provide information about the bioavailability of nutrients and energy in animal feedstuffs to apply when formulating cost-effective practical feeds for olive flounder.

Keywords

Acknowledgement

This study was supported by a grant from the Korean National Institute of Fisheries Science (No. R2022016) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03023584).

References

  1. Aksnes A, Mundheim H. The impact of raw material freshness and processing temperature for fish meal on growth, feed efficiency and chemical composition of Atlantic halibut (Hippoglossus hippoglossus). Aquaculture. 1997;149:87-106. https://doi.org/10.1016/S0044-8486(96)01438-X
  2. Allan GL, Parkinson S, Booth MA, Stone DAJ, Rowland SJ, Frances J, et al. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: I. digestibility of alternative ingredients. Aquaculture. 2000;186:293-310. https://doi.org/10.1016/S0044-8486(99)00380-4
  3. Anderson JS, Lall SP, Anderson DM, McNiven MA. Evaluation of protein quality in fish meals by chemical and biological assays. Aquaculture. 1993;115:305-25. https://doi.org/10.1016/0044-8486(93)90145-O
  4. Anderson JS, Lall SP, Anderson DM, McNiven MA. Availability of amino acids from various fish meals fed to Atlantic salmon (Salmo solar). Aquaculture. 1995;138:291-301. https://doi.org/10.1016/0044-8486(95)01131-5
  5. Association of Official Analytical Chemists [AOAC]. Official methods of analysis. Washington, DC: AOAC; 1995.
  6. Back SJ, Park SJ, Moon JS, Lee SB, Jo SJ, Nam TJ, et al. The effects of dietary heat-killed probiotics bacteria additives in low-fishmeal feed on growth performance, immune responses, and intestinal morphology in juvenile olive flounder Paralichthys olivaceus. Aquac Rep. 2020;18:100415.
  7. Bae J, Hamidoghli A, Won S, Choi W, Lim SG, Kim KW, et al. Evaluation of seven different functional feed additives in a low fish meal diet for olive flounder, Paralichthys olivaceus. Aquaculture. 2020;525:735333.
  8. Boran G, Boran M, Karacam H. Seasonal changes in proximate composition of anchovy and storage stability of anchovy oil. J Food Qual. 2008;31:503-13. https://doi.org/10.1111/j.1745-4557.2008.00215.x
  9. Borghesi R, Portz L, Oetterer M, Cyrino JEP. Apparent digestibility coefficient of protein and amino acids of acid, biological and enzymatic silage for Nile tilapia (Oreochromis niloticus). Aquac Nutr. 2008;14:242-8. https://doi.org/10.1111/j.1365-2095.2007.00523.x
  10. Bragadottir M, Palmadottir H, Kristbergsson K. Composition and chemical changes during storage of fish meal from Capelin (Mallotus villosus). J Agric Food Chem. 2004;52:1572-80. https://doi.org/10.1021/jf034677s
  11. Bucking C, Wood CM. The effect of postprandial changes in pH along the gastrointestinal tract on the distribution of ions between the solid and fluid phases of chyme in rainbow trout. Aquac Nutr. 2009;15:282-96. https://doi.org/10.1111/j.1365-2095.2008.00593.x
  12. Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture. 2002;214:253-71. https://doi.org/10.1016/S0044-8486(01)00852-3
  13. Camacho-Rodriguez J, Macias-Sanchez MD, Ceron-Garcia MC, Alarcon FJ, Molina-Grima E. Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under different storage conditions. J Appl Phycol. 2018;30:1049-59.
  14. Cho CY, Slinger SL. Apparent digestibility measurement in foodstuff for rainbow trout. In: Proceedings of the Finfish Nutrition and Fishfeed Technology; 1978; Hamburg, Germany. p. 239-47.
  15. Cho SH, Lee SM, Lee SM, Park BH, Park IS, Choi CY, et al. Effect of partial replacement of fish meal with Squid Liver MealTM in the diet on growth and body composition of juvenile olive flounder (Paralichthys olivaceus) during winter season. Fish Aquat Sci. 2005a;8:65-9.
  16. Cho SH, Lee SM, Park BH, Park IS, Choi CY, Lee SM, et al. Effect of partial dietary substitution of meat meal for fish meal on the growth and body composition of the juvenile olive flounder Paralichthys olivaceus. Fish Aquat Sci. 2005b;8:138-41.
  17. Choi SM, Wang X, Park GJ, Lim SR, Kim KW, Bai SC, et al. Dietary dehulled soybean meal as a replacement for fish meal in fingerling and growing olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquac Res. 2004;35:410-8. https://doi.org/10.1111/j.1365-2109.2004.01046.x
  18. Cruz-Suarez LE, Tapia-Salazar M, Villarreal-Cavazos D, Beltran-Rocha J, Nieto-Lopez MG, Lemme A, et al. Apparent dry matter, energy, protein and amino acid digestibility of four soybean ingredients in white shrimp Litopenaeus vannamei juveniles. Aquaculture. 2009;292:87-94. https://doi.org/10.1016/j.aquaculture.2009.03.026
  19. Drew MD, Borgeson TL, Thiessen DL. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim Feed Sci Technol. 2007;138:118-36. https://doi.org/10.1016/j.anifeedsci.2007.06.019
  20. Duncan DB. Multiple range and multiple F tests. Biometrics. 1955;11:1-42. https://doi.org/10.2307/3001478
  21. Furukawa A, Tsukahara H. On the acid digestion method for the determination of chromic oxide as an index substance in the study of digestibility of fish feed. Bull Jpn Soc Sci Fish. 1966;32:502-8. https://doi.org/10.2331/suisan.32.502
  22. Galkanda-Arachchige HSC, Wilson AE, Davis DA. Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev Aquac. 2020;12:1624-36. https://doi.org/10.1111/raq.12401
  23. Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, et al. Fishmeal alternative protein sources for aquaculture feeds. In: Gasco L, Gai F, Maricchiolo G, Genovese L, Ragonese S, Bottari T, et al., editors. Feeds for the aquaculture sector: current situation and alternative sources. Cham: Springer; 2018. p. 1-28.
  24. Gaylord TG, Barrows FT, Rawles SD. Apparent digestibility of gross nutrients from feedstuffs in extruded feeds for rainbow trout, Oncorhynchus mykiss. J World Aquac Soc. 2008;39:827-34. https://doi.org/10.1111/j.1749-7345.2008.00220.x
  25. Gaylord TG, Gatlin DM 3rd. Determination of digestibility coefficients of various feedstuffs for red drum (Sciaenops ocellatus). Aquaculture. 1996;139:303-14. https://doi.org/10.1016/0044-8486(95)01175-7
  26. Gomes EF, Rema P, Kaushik SJ. Replacement of fish meal by plant proteins in the diet of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture. 1995;130:177-86. https://doi.org/10.1016/0044-8486(94)00211-6
  27. Ha MS, Cho SH, Kim T. Dietary substitution of fish meal by meat meal: effects on juvenile olive flounder (Paralichthys olivaceus) growth performance, feed utilization, haematology, biochemical profile and disease resistance against Streptococcus iniae. Aquac Nutr. 2021;27:1888-902. https://doi.org/10.1111/anu.13326
  28. Halver JE, Hardy RW. Nutrient flow and retention. In: Halver JE, Hardy RW, editors. Fish nutrition. 3rd ed. Amsterdam: Academic Press; 2002. p. 755-70.
  29. Hien TTT, Phuong NT, Le Tu TC, Glencross B. Assessment of methods for the determination of digestibilities of feed ingredients for Tra catfish, Pangasinodon hypothalamus. Aquac Nutr. 2010;16:351-8.
  30. Hussain SM, Afzal M, Salim M, Javid A, Khichi TAA, Hussain M, et al. Apparent digestibility of fish meal, blood meal and meat meal for Labeo rohita fingerlings. J Anim Plant Sci. 2011;21:807-11.
  31. Irvin SJ, Tabrett SJ. A novel method of collecting fecal samples from spiny lobsters. Aquaculture. 2005;243:269-72. https://doi.org/10.1016/j.aquaculture.2004.10.001
  32. Jang JW, Kim KD, Kim KW, Lee BJ, Hur SW, Han HS. Effects of dietary squid liver powder content on the growth performance, cadmium accumulation and nonspecific immune response of juvenile olive flounder Paralichthys olivaceus. Aquac Rep. 2021;21:100826.
  33. Jeong HS, Choi DG, Lee KW, Cho SH, Lim SG, Lee BJ, et al. Attractiveness of various crude feed ingredients to juvenile olive flounder (Paralichthys olivaceus, Temminck & Schlegel) and its application to aquaculture. Aquac Res. 2020;51:4517-32. https://doi.org/10.1111/are.14797
  34. Kandathil Radhakrishnan D, AkbarAli I, Schmidt BV, John EM, Sivanpillai S, Thazhakot Vasunambesan S. Improvement of nutritional quality of live feed for aquaculture: an overview. Aquac Res. 2020;51:1-17. https://doi.org/10.1111/are.14357
  35. Khosravi S, Bui HTD, Rahimnejad S, Herault M, Fournier V, Kim SS, et al. Dietary supplementation of marine protein hydrolysates in fish-meal based diets for red sea bream (Pagrus major) and olive flounder (Paralichthys olivaceus). Aquaculture. 2015;435:371-6. https://doi.org/10.1016/j.aquaculture.2014.10.019
  36. Kim HS, Jung WG, Myung SH, Cho SH, Kim DS. Substitution effects of fishmeal with tuna byproduct meal in the diet on growth, body composition, plasma chemistry and amino acid profiles of juvenile olive flounder (Paralichthys olivaceus). Aquaculture. 2014;431:92-8. https://doi.org/10.1016/j.aquaculture.2014.03.025
  37. Kim J, Cho SH, Kim T, Hur SW. Substitution effect of fish meal with various sources of animal by-product meals in feed on growth, feed utilization, body composition, haematology and non-specific immune response of olive flounder (Paralichthys olivaceus, Temminck & Schlegel, 1846). Aquac Res. 2021;52:2802-17. https://doi.org/10.1111/are.15132
  38. Kim KD, Kim DG, Kim SK, Kim KW, Son MH, Lee SM. Apparent digestibility coefficients of various feed ingredients for olive flounder, Paralichthys olivaceus. Korean J Fish Aquat Sci. 2010;43:325-30.
  39. Kim KW, Wang XJ, Bai SC. Optimum dietary protein level for maximum growth of juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquac Res. 2002;33:673-9. https://doi.org/10.1046/j.1365-2109.2002.00704.x
  40. Kim MG, Lee C, Shin J, Lee BJ, Kim KW, Lee KJ. Effects of fish meal replacement in extruded pellet diet on growth, feed utilization and digestibility in olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci. 2019;52:149-58.
  41. Kokou F, Fountoulaki E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture. 2018;495:295-310. https://doi.org/10.1016/j.aquaculture.2018.06.003
  42. Koprucu K, Ozdemir Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture. 2005;250:308-16. https://doi.org/10.1016/j.aquaculture.2004.12.003
  43. Lee S, Chowdhury MAK, Hardy RW, Small BC. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease. Aquaculture. 2020;524:735270.
  44. Lee SM. Apparent digestibility coefficients of various feed ingredients for juvenile and grower rockfish (Sebastes schlegeli). Aquaculture. 2002;207:79-95. https://doi.org/10.1016/S0044-8486(01)00751-7
  45. Lee SM, Cho SH, Kim KD. Effects of dietary protein and energy levels on growth and body composition of juvenile flounder Paralichthys olivaceus. J World Aquac Soc. 2000;31:306-15.
  46. Lee SM, Park CS, Bang IC. Dietary protein requirement of young Japanese flounder Paralichthys olivaceus. Fish Sci. 2002;68:158-64.
  47. Lemos D, Lawrence AL, Siccardi AJ 3rd. Prediction of apparent protein digestibility of ingredients and diets by in vitro pH-stat degree of protein hydrolysis with species-specific enzymes for juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture. 2009;295:89-98. https://doi.org/10.1016/j.aquaculture.2009.06.011
  48. Maina JG, Beames RM, Higgs D, Mbugua PN, Iwama G, Kisia SM. Digestibility and feeding value of some feed ingredients fed to tilapia Oreochromis niloticus (L.). Aquac Res. 2002;33:853-62. https://doi.org/10.1046/j.1365-2109.2002.00725.x
  49. Maynou F, Demestre M, Martin P, Sanchez P. Application of a multi-annual generalized depletion model to the Mediterranean sandeel fishery in Catalonia. Fish Res. 2021;234:105814.
  50. McGoogan BB, Reigh RC. Apparent digestibility of selected ingredients in red drum (Sciaenops ocellatus) diets. Aquaculture. 1996;141:233-44. https://doi.org/10.1016/0044-8486(95)01217-6
  51. Medagoda N, Kim MG, Gunathilaka BE, Park SH, Lee KJ. Effect of total replacement of fish oil with tallow and emulsifier in diet on growth, feed utilization, and immunity of olive flounder (Paralichthys olivaceus). J World Aquac Soc. 2022;53:558-71. https://doi.org/10.1111/jwas.12835
  52. Millamena OM. Replacement of fish meal by animal by-product meals in a practical diet for grow-out culture of grouper Epinephelus coioides. Aquaculture. 2002;204:75-84. https://doi.org/10.1016/S0044-8486(01)00629-9
  53. MoonLee HY, Choi SM, Ji HS. Effect of partial replacement of fish meal by new squid Sepia esculenta liver powders on the growth and body composition of juvenile olive flounder Paralichthys olivaceus. Korean J Fish Aquat Sci. 2012;45:132-8.
  54. Mu YY, Lam TJ, Guo JY, Shim KF. Protein digestibility and amino acid availability of several protein sources for juvenile Chinese hairy crab Eriocheir sinensis H. Milne-Edwards (Decapoda, Grapsidae). Aquac Res. 2000;31:757-65. https://doi.org/10.1046/j.1365-2109.2000.00498.x
  55. National Research Council [NRC]. Nutrient requirements of fish. Washington, DC: The National Academies Press; 1993. p. 114.
  56. Opstvedt J, Nygard E, Samuelsen TA, Venturini G, Luzzana U, Mundheim H. Effect on protein digestibility of different processing conditions in the production of fish meal and fish feed. J Sci Food Agric. 2003;83:775-82. https://doi.org/10.1002/jsfa.1396
  57. Panase P, Uppapong S, Tuncharoen S, Tanitson J, Soontornprasit K, Intawicha P. Partial replacement of commercial fish meal with Amazon sailfin catfish Pterygoplichthys pardalis meal in diets for juvenile Mekong giant catfish Pangasianodon gigas. Aquac Rep. 2018;12:25-9. https://doi.org/10.1016/j.aqrep.2018.08.005
  58. Park SJ, Seo BS, Park HS, Lee BJ, Hur SW, Nam TJ, et al. Effect of fishmeal content in the diet on the growth and sexual maturation of olive flounder (Paralichthys olivaceus) at a typical fish farm. Animals. 2021;11:2055.
  59. Rahman MM, Han HS, Kim KW, Kim KD, Lee BJ, Lee SM. Apparent digestibility coefficients of the extruded pellet diets containing various fish meals for olive flounder, Paralichthys olivaceus. Fish Aquat Sci. 2016;19:27.
  60. Refstie S, Korsoen OJ, Storebakken T, Baeverfjord G, Lein I, Roem AJ. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture. 2000;190:49-63. https://doi.org/10.1016/S0044-8486(00)00382-3
  61. Rehbein H. Identification of the fish species processed to fish meal. J Aquat Food Prod Technol. 2008;11:45-56. https://doi.org/10.1300/J030v11n03_05
  62. Riche M, Trottier NL, Ku PK, Garling DL. Apparent digestibility of crude protein and apparent availability of individual amino acids in tilapia (Oreochromis niloticus) fed phytase pretreated soybean meal diets. Fish Physiol Biochem. 2001;25:181-94. https://doi.org/10.1023/A:1022222431004
  63. Small BC, Austic RE, Soares JH Jr. Amino acid availability of four practical feed ingredients fed to striped bass Morone saxatilis. J World Aquac Soc. 1999;30:58-64. https://doi.org/10.1111/j.1749-7345.1999.tb00317.x
  64. Sorensen M. A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded high-energy fish feed as measured by prevailing methods. Aquac Nutr. 2012;18:233-48. https://doi.org/10.1111/j.1365-2095.2011.00924.x
  65. Stone DAJ, Allan GL, Parkinson S, Rowland SJ. Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus: III. digestibility and growth using meat meal products. Aquaculture. 2000;186:311-26. https://doi.org/10.1016/S0044-8486(99)00381-6
  66. Sugiura SH, Dong FM, Rathbone CK, Hardy RW. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture. 1998;159:177-202. https://doi.org/10.1016/S0044-8486(97)00177-4
  67. Sullivan JA, Reigh RC. Apparent digestibility of selected feedstuffs in diets for hybrid striped bass (Morone saxatilis ♀ X Morone chrysops ♂). Aquaculture. 1995;138:313-22. https://doi.org/10.1016/0044-8486(95)01071-8
  68. Terrazas-Fierro M, Civera-Cerecedo R, Ibarra-Martinez L, Goytortua-Bores E, Herrera-Andrade M, Reyes-Becerra A. Apparent digestibility of dry matter, protein, and essential amino acid in marine feedstuffs for juvenile whiteleg shrimp Litopenaeus vannamei. Aquaculture. 2010;308:166-73. https://doi.org/10.1016/j.aquaculture.2010.08.021
  69. Thompson KR, Rawles SD, Metts LS, Smith RG, Wimsatt A, Gannam AL, et al. Digestibility of dry matter, protein, lipid, and organic matter of two fish meals, two poultry by-product meals, soybean meal, and distiller's dried grains with solubles in practical diets for sunshine bass, Morone chrysops × M. saxatilis. J World Aquac Soc. 2008;39:352-63. https://doi.org/10.1111/j.1749-7345.2008.00174.x
  70. Tibbetts SM, Milley JE, Lall SP. Apparent protein and energy digestibility of common and alternative feed ingredients by Atlantic cod, Gadus morhua (Linnaeus, 1758). Aquaculture. 2006;261:1314-27. https://doi.org/10.1016/j.aquaculture.2006.08.052
  71. Tram NDQ, Ngoan LD, Hung LT, Lindberg JE. A comparative study on the apparent digestibility of selected feedstuffs in hybrid catfish (Clarias macrocephalus × Clarias gariepinus) and Nile tilapia (Oreochromis niloticus). Aquac Nutr. 2011;17:e636-43. https://doi.org/10.1111/j.1365-2095.2010.00813.x
  72. Turchini GM, Trushenski JT, Glencross BD. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N Am J Aquac. 2019;81:13-39. https://doi.org/10.1002/naaq.10067
  73. Yamamoto T, Akimoto A, Kishi S, Unuma T, Akiyama T. Apparent and true availabilities of amino acids from several protein sources for fingerling rainbow trout, common carp, and red sea bream. Fish Sci. 1998;64:448-58. https://doi.org/10.2331/fishsci.64.448
  74. Yoo GY, Choi SM, Kim KW, Bai SC. Apparent protein and phosphorus digestibilities of nine different dietary protein sources and their effects on growth of juvenile olive flounder, Paralichthys olivaceus. J Aquac. 2006;19:254-60.
  75. Yu HR, Zhang Q, Cao H, Wang XZ, Huang GQ, Zhang BR, et al. Apparent digestibility coefficients of selected feed ingredients for juvenile snakehead, Ophiocephalus argus. Aquac Nutr. 2013;19:139-47.
  76. Yuan Y, Gong S, Yang HJ, Lin Y, Yu D, Luo Z. Apparent digestibility of selected feed ingredients for Chinese sucker, Myxocyprinus asiaticus. Aquaculture. 2010;306:238-43. https://doi.org/10.1016/j.aquaculture.2010.05.017
  77. Zhou QC, Tan BP, Mai KS, Liu YJ. Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture. 2004;241:441-51. https://doi.org/10.1016/j.aquaculture.2004.08.044