DOI QR코드

DOI QR Code

Development of Gold Amalgam Voltametric Microelectrode for the Quantification of O2, Fe2+, Mn2+, and HS-

퇴적물 공극수내 O2, Fe2+, Mn2+ 및 HS- 센싱을 위한 금아말감 미세전극 개발

  • Kwon, Soongil (Department of Environment System Engineering, Korea University Sejong Campus) ;
  • Park, Donggeun (Department of Electronics and Information Engineering, Korea University Sejong Campus) ;
  • Choi, Geunyoung (Department of Electronics and Information Engineering, Korea University Sejong Campus) ;
  • Sung, Jaebin (Department of Electronics and Information Engineering, Korea University Sejong Campus) ;
  • Kim, Hyunsoo (Department of Electronics and Information Engineering, Korea University Sejong Campus) ;
  • Lee, Jae Woo (Department of Electronics and Information Engineering, Korea University Sejong Campus) ;
  • Hong, Yongseok (Department of Environment System Engineering, Korea University Sejong Campus)
  • 권순길 (고려대학교 세종캠퍼스 환경시스템공학과) ;
  • 박동근 (고려대학교 세종캠퍼스 전자 및 정보공학과) ;
  • 최근영 (고려대학교 세종캠퍼스 전자 및 정보공학과) ;
  • 성재빈 (고려대학교 세종캠퍼스 전자 및 정보공학과) ;
  • 김현수 (고려대학교 세종캠퍼스 전자 및 정보공학과) ;
  • 이재우 (고려대학교 세종캠퍼스 전자 및 정보공학과) ;
  • 홍용석 (고려대학교 세종캠퍼스 환경시스템공학과)
  • Received : 2021.12.29
  • Accepted : 2022.03.18
  • Published : 2022.03.30

Abstract

A gold amalgam voltammetric microelectrode (GAVM) system was developed for the quantification of dissolved biogeochemical species, such as O2, Fe2+, Mn2+, and HS- in sediment porewater. Commercially available Ag/AgCl and platinum electrodes were used as the reference and counter electrode, respectively, and a gold amalgam microelectrode was fabricated in the laboratory using 150-um diameter gold wire and a borosilicate capillary tube with a 1.6-mm diameter. A portable potentiostat (Metrohm, DropSens) was used for the application of voltage sweeping and to acquire the electric current. For sediment profiling, a commercially available actuator was customized and modified. The analysis method used in the system used the most widely used analysis method among the electrochemical analysis currently used The GAVM system was successively calibrated with the species and applied to estuarine sediments. The porewater analysis showed that the oxygen concentration was decreased to zero at a depth of 0.6 mm, and maximum Mn2+ and Fe2+ concentrations of 50 uM and 20 uM were detected at 2 and 3-cm depths, respectively. Maximum HS- concentrations of 10 uM were detected at 4 cm in the deeper sediments. The GAVM system was successfully developed and applied to the sediment and can be used to better understand biogeochemical reactions.

Keywords

References

  1. Ansari, T. M., Marr, I. L., and Tariq, N. (2004). Heavy metals in marine pollution perspective-A mini review, Journal of Applied Sciences, 4(1), 1-20. https://doi.org/10.3923/jas.2004.1.20
  2. Brendel, P. J. and Luther, G. W. I. (1995). Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2, and S (-II) in porewaters of marine and freshwater sediments, Environmental Science & Technology, 29(3), 751-761. https://doi.org/10.1021/es00003a024
  3. Conard, R. (1996). Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO), Microbiological Reviews, 60(4), 609-640. https://doi.org/10.1128/mr.60.4.609-640.1996
  4. Fleeger, J. W., Carman, K. R., and Nisbet, R. M. (2003). Indirect effects of contaminants in aquatic ecosystems, The Science of the Total Environment, 317(1-3). 207-233. https://doi.org/10.1016/S0048-9697(03)00141-4
  5. Guan, L., Cai, J., and Li Y. (2020). Characteristics of the random transients caused by clustered pitting corrosion for Al-Mg microelectrode, Materials and Corrosion, 71(1), 86-92. https://doi.org/10.1002/maco.201911048
  6. Himmelheber, D. W., Taillefert, M., Pennell, K. D., and Hughes, J. B. (2008). Spatial and temporal evolution of biogeochemical processes following in situ capping of contaminated sediments, Environment Science & Technology, 42(11), 4113-4120 https://doi.org/10.1021/es702626x
  7. Jovic, J. D., Zejnilovic, R. M., Despic, A. R., and Stevanovic, J. S. (1988). Characterization of electrochemically formed thin layers of binary alloys by linear sweep voltammetry, Journal of Applied Electrochemistry, 18(4), 511-520 https://doi.org/10.1007/BF01022244
  8. Kahlert, H. (2013). Handbook of Reference Electrodes, Gyorgy InzeltAndrzej, LewenstamFritz Scholz, Springer Berlin Heidelberg, Berlin, 289-303.
  9. Kevin, G. T., Philip, N. O., Ramon, J. B., and Celso, G. (2008). Sediment and contaminant sources and transfers in river basins, Sustainable Management of Sediment Resources, 4, 83-135. https://doi.org/10.1016/S1872-1990(08)80006-2
  10. Lovely D. R. and Phillips, E. J. P. (1994). N ovel processes for anaerobic sulfate production from elemental sulfur by sulfate-reducing bacteria, Applied and Environmental Microbiology, 60(7), 2394-2399. https://doi.org/10.1128/aem.60.7.2394-2399.1994
  11. Luther, G. W. I., Brendel, P. J., Lewis, B. L., Sundby, B., Lefrancois, L., Silverberg, N., and Nuzzio D. B. (1998). Simultaneous measurement of O2, Mn, Fe, I-, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode, Limnology and Oceanography, 43(2), 325-333. https://doi.org/10.4319/lo.1998.43.2.0325
  12. Park, H., Takmakov, P., and Lee H. (2018). Electrochemical evaluations of fractal microelectrodes for energy efficient neurostimulation, Scientific Reports, 8, 4375. https://doi.org/10.1038/s41598-018-22545-w
  13. Reimers, C. E., Fischer, K. M., Merewether, R., Smith, K., and Jahnke, R. A. (1986). Oxygen microprofiles measured in situ in deep ocean sediments, Nature, 320, 741-744. https://doi.org/10.1038/320741a0
  14. Shin, H., Jeong, S., Lee, J. H., Sun, W., Choi, N., and Cho. I. J. (2021). 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics, Nature Communications, 12, 492. https://doi.org/10.1038/s41467-020-20763-3
  15. Silva, J. J., Paim, L. L., and Stradiotto, N. R. (2014). Simultaneous determination of iron and copper in ethanol fuel using nafion/carbon nanotubes electrode, Electroanalysis, 26(8), 1794-1800. https://doi.org/10.1002/elan.201400136
  16. Soares, C. O., Rodriguez, O., Buvat, G., Duca, M., Garbarino, S., Guay, D., Denuault, G., and Tavares, A. C. (2020). Sampled current voltammetry for kinetic studies on materials unsuitable for rotating discs or microelectrodes: Application to the oxygen reduction reaction in acidic medium, Electrochimica Acta, 362, 136946. https://doi.org/10.1016/j.electacta.2020.136946
  17. Tahir, M., He, L., Haider, W. A., Yang, W., Hong, X., Guo, Y., Pan, X., Tang, H., Li, Y., and Mai L. (2019). Co-Electrodeposited porous PEDOT-CNT microelectrodes for integrated micro-supercapacitors with high energy density, high rate capability, and long cycling life, Nanoscale, 11(16), 7761-7770. https://doi.org/10.1039/c9nr00765b
  18. Valentin, M., Slawomira, S., and Leon, S. (2018). Square-wave voltammetry, ChemTexts, 4(4), 17. https://doi.org/10.1007/s40828-018-0073-0
  19. Visscher, P. T., Beukema, J., and Gemerden H. V. (1991). In situ characterization of sediments: Measurements of oxygen and sulfide profiles with a novel combined needle electrode, Limnology and oceanography, 36(7), 1476-1480. https://doi.org/10.4319/lo.1991.36.7.1476
  20. Yucel, M., Sommer, S., Dale, A. W., and Pfannkuche, O. (2017). Microbial sulfide filter along a benthic redox gradient in the eastern Gotland basin, Baltic sea, Frontiers in Microbiology, 8, 169.