과제정보
2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-중견연구사업의 지원을 받아 수행된 연구임(NRF-2020R1A2C1010502).
참고문헌
- Akihiko Ishikawa, 2020, Deep Learning Textbook to Learn using Python, Hanbit media. (in Korean)
- Al-Mashhadani, R., Alkawsi, G., Baashar, Y., Ahmed Alkahtani, A., Hani Nordin, F., Hashim, W. 2021, Deep learning methods for solar fault detection and classification: A review. Information Sciences Letters, 10(2): 13.
- Chin K., 2021, Problem Analysis and Improvement Measures of Rural Area Development for PV Power Plant Project, KIEAE Journal, 21(5): 83-90. (in Korean) https://doi.org/10.12813/kieae.2021.21.5.083
- Chuncheongbuk-do, 2021, Solar Power Project Permit Status, https://www.data.go.kr/ [accessed: March 5, 2022]
- Chungcheongnam-do, 2021, Solar Power Project Permit Status, https://www.data.go.kr/ [accessed: March 5, 2022]
- Electric Power Statistics Information System (EPSIS), 2021, Generation capacity by fuel, http://epsis.kpx.or.kr (in Korean)
- Golovko, V., Kroshchanka, A., Bezobrazov, S., Sachenko, A., Komar, M., & Novosad, O., 2018, Development of solar panels detector. In 2018 International Scientific- Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) (pp. 761-764). IEEE.
- Gorlapraveen123, 2021, https://commons.wikimedia.org/wiki/File:ResNet50.png [accessed: May 10, 2022]
- Ha, J., Lee, S., Kim, D., 2022, Social media posts and user comment analysis on rural solar issues. Journal of The Korean Data Analysis Society (JKDAS), 24(2): 683-699. https://doi.org/10.37727/jkdas.2022.24.2.683
- Han, S. H., Rahim, T., Park J.. H., Shi, S. Y., 2020, Damaged solar panel detection drone system using deep learning and thermal imaging camera, Conference proceeding of The Korean Institute of Communications and Information Sciences. (in Korean)
- Jeollabuk-do, 2019, Solar Power Project Permit Status, https://www.data.go.kr/ [accessed: March 5, 2022]
- Jeollanam-do, 2018, Solar Power Project Permit Status, https://www.data.go.kr/ [accessed: April 15, 2020]
- Jo, W., Lim, Y., Park, K.-H., 2019, Deep learning based land cover classification using convolutional neural network:a case study of Korea, Journal of the Korean geographical society, 54(1): 1-16. (in Korean)
- Kakao-skyview, http://map.kakao.com [accessed: March 7~March 21, 2022]
- Kim, J. S. and Hong, I. Y., 2021, Analysis of Building Object Detection Based on the YOLO Neural Network Using UAV Images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 39(6): 381-392. (in Korean) https://doi.org/10.7848/KSGPC.2021.39.6.381
- Korea Rural Economic Institute (KREI), 2018, Research on problems and improvement plans for the spread of rural solar power, KREI Report. (in Korean)
- Lee, S. and Kim, J., 2019, Land Cover Classification using Sematic Image Segmentation with Deep Learning, Korean Journal of Remote Sensing, 35(2): 279-288. (in Korean) https://doi.org/10.7780/KJRS.2019.35.2.7
- MathworksⒸ, http://kr.mathworks.com [accessed: April 7, 2022]
- Park, M.-L., Shin, S.-W., Oh, Si.-D., Kang, S.-H., 2019, Survey and Analysis of Resident Acceptability for Photovoltaic System in Rural Region- Focusing on Economic Factors, Conference proceeding of the Korean solar energy society, 198.
- Perez, R. M., Arias, J. S., Mendez-Porras, A. 2019, Solar panels recognition based on machine learning. In 2019 IV Jornadas Costarricenses de Investigacion en Computacion e Informatica (JoCICI) 1-5. IEEE.
- Planche, B. and Andres, E., 2020, Practice! Deep Learning Computer Vision with TensorFlow 2, Wikibooks. (in Korean)
- SaGong, J. H., Jung, O. S., Kwon, O. S., 2018, Current status of solar power generation facilities in Chungnam and ecological and landscape response strategies, Chungnam Report, 295, 1-13. (in Korean).