DOI QR코드

DOI QR Code

색상 분석법을 이용한 농도 및 촉매반응속도 측정

Evaluation of Concentration and Reaction Kinetics through Color Analyses

  • 이은아 (금오공과대학교 화학공학과) ;
  • 장지웅 (금오공과대학교 화학공학과)
  • Lee, Euna (Department of Chemical Engineering, Kumoh National Institute of Technology) ;
  • Chang, Ji Woong (Department of Chemical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2022.04.29
  • 심사 : 2022.05.19
  • 발행 : 2022.06.10

초록

반응물과 생성물이 자외선 및 가시광선 영역에서 빛을 흡수하는 경우 시료의 농도 및 화학반응의 특성을 평가하는데 자외선가시광선분광법을 사용할 수 있다. 하지만 고농도와 높은 반응 온도 조건에서는 자외선가시광선분광법을 사용하는데 한계가 존재한다. 색을 가지고 있는 시료의 촉매 반응을 색상 분석으로 농도 및 조성을 외부에서 수집한 이미지를 분석하여 자외선가시광선분광법에서 동일한 결과를 얻을 수 있다. Resazurin은 촉매 및 환원제에 의해 resorufin으로 환원되며 농도에 따라 적색변광이 일어나며 카메라를 통해 수집하여 분석할 수 있다. 색상 분석을 위한 색공간은 CIE L*a*b*를 사용하였고 소프트웨어를 통해 각각의 색상좌표 값을 추출하고 각 시료의 농도를 분석하였다. 시료의 농도와 촉매 반응에 대해 색공간을 이용한 분석법과 자외선가시광선분광법의 결과와 비교하여 제시된 방법의 유효성을 확인할 수 있다. 더욱이 색상 분석을 통한 농도 분석에서는 자외선가시광선분광법과 다르게 흡수파장이 중복이 있는 경우에도 디콘볼루션 없이 독립적으로 두 물질의 농도 측정이 가능하다.

UV-vis spectroscopy is one of the powerful tools for measuring the concentrations of reactant and products during a chemical reaction. However, there is an limitation of using the technique when the reaction undergoes in high concentration and high temperature. Color analysis using camera images can provide the identical results with UV-vis analysis with regardless of the sample concentration and temperature. The catalytic reduction reaction of resazurin to resorufin was investigated using the color analysis with the color spaces such as CIE L*a*b*. Moreover, the color analysis enabled the independent analysis of two different material's concentrations without the deconvolution of overlapped wavelengths unlike the case of using UV-vis spectroscopy.

키워드

과제정보

This work was supported by Kumoh National Institute of Technology [2019-104-109]

참고문헌

  1. M. Malik, K. Chan, and G. Azimi, Quantification of nickel, cobalt, and manganese concentration using ultraviolet-visible spectroscopy, RSC Adv., 11, 28014-28028 (2021). https://doi.org/10.1039/D1RA03962H
  2. X. Xiao, Y. Sun, W. Sun, H. Shen, H. Zheng, Y. Xu, J. Zhao, H. Wu, and C. Liu, Advanced treatment of actual textile dye wastewater by Fenton-flocculation process, Can. J. Chem. Eng., 95, 1245-1252 (2016). https://doi.org/10.1002/cjce.22752
  3. P. Quinlan, N. Grishkewich, and K. Tam, Removal of 2-naphthoxyacetic acid from aqueous solution using quaternized chitosan beads, Can. J. Chem. Eng., 95, 21-32 (2017). https://doi.org/10.1002/cjce.22594
  4. W. Giufrida, F. Voll, A. Feihrmann, M. Kunita, E. Madureira, M. Guilherme, D. Vedoy, V. Cabral, and L. Cardozo-Filho, Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology, Can. J. Chem. Eng., 94, 1336-1341 (2016). https://doi.org/10.1002/cjce.22511
  5. R. Brooker, C. Bell, L. Bonville, H. Kunz, and J. Fenton, Determining vanadium concentrations using the UV-Vis response method, J. Electrochem. Soc., 162, A608 (2015). https://doi.org/10.1149/2.0371504jes
  6. M. Soylak, B. Ozdemir, and E. Yilmaz, An environmentally friendly and novel amine-based liquid phase microextraction of quercetin in food samples prior to its determination by UV-vis spectrophotometry, Spectrochim. Acta A, 243, 118806 (2020). https://doi.org/10.1016/j.saa.2020.118806
  7. W. Haiss, N. Thanh, J. Aveyard, and D. Fernig, Determination of size and concentration of gold nanoparticles from UV-Vis Spectra, Anal. Chem., 79, 4215-4221 (2007). https://doi.org/10.1021/ac0702084
  8. T. Hendel, M. Wuithschick, F. Kettemann, A. Birnbaum, K. Rademann, and J. Polte, In situ determination of colloidal gold concentrations with UV-Vis Spectroscopy: Limitations and Perspectives, Anal. Chem., 86, 11115-11124 (2014). https://doi.org/10.1021/ac502053s
  9. F. Porta and M. Rossi, Gold nanostructured materials for the selective liquid phase catalytic oxidation, J. Mol. Catal. A Chem., 204, 553-559 (2003). https://doi.org/10.1016/S1381-1169(03)00338-8
  10. K. Kawamura, T. Yasuda, T. Hatanka, K. Hamahiga, N. Matsuda, M. Ueshima, and K. Nakai, In situ UV-VIS spectrophotometry within the second time scale as a research tool for solid-state catalyst and liquid-phase reactions at high temperatures: Its application to the formation of HMF from glucose and cellulose, Chem. Eng. J., 307, 1066-1075 (2017). https://doi.org/10.1016/j.cej.2016.09.036
  11. Y. Xia, Y. Xiong, B. Lim, and S. Skrabalak, Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angew. Chem. Int. Ed., 48, 60-103 (2008). https://doi.org/10.1002/anie.200802248
  12. Y. Park and J. Chang, Resazurin redox reaction mechanism using silver nanoparticle synthesized with monosaccharides and disaccharides, Appl. Chem., 31, 299-304 (2020).
  13. G. Verma and M. Mishra, Development and optimization of UV-Vis spectroscopy-A review, World J. Pharm. Res., 7, 1170-1180 (2018).
  14. F. Rocha, A. Gomes, C. Lunardi, S. Kaliaguine, and G. Patience, Experimental methods in chemical engineering: ultraviolet visible spectroscopy-UV-Vis, Can. J. Chem. Eng., 96, 2512-2517 (2018). https://doi.org/10.1002/cjce.23344
  15. F. El-Yazbi, M. Korany, and M. Bedair, A sensitive colormetric method for the determination of imipramine hydrochloride and desipramine hydrochloride, J. Clin. Pharm. Ther., 10, 373-377 (1985). https://doi.org/10.1111/j.1365-2710.1985.tb00936.x
  16. M. Xia, L. Wang, Z. Yang, and H. Chen, A novel digital color analysis method for rapid glucose detection, Anal. Methods., 16, 6654-6663 (2015).
  17. C. Su, H. Chiu, and T. Hsieh, An efficient image retrieval based on HSV color space, 2011 International Conference on Electrical and Control Engineering, September 16-18, Yichang, China (2011).
  18. E. Kim, H. Cho, E. Jang, and S. Kim, Colour recognition of landmarks using FIS and CIE LAB., 2016 International Conference on Fuzzy Theory and Its Applications, November 9-11, Taichung, Taiwan (2017).
  19. D. Kerr, The CIE XYZ and xyY color spaces, Colorimetry., 1, 1-16 (2010).
  20. R. Das, Wavelength- and Frequency-Dependent Formulations of Wien's Displacement Law, J. Chem. Educ., 92, 1130-1134 (2015). https://doi.org/10.1021/acs.jchemed.5b00116
  21. S. Kitsinelis, G. Zissis, and L. Arexis-Boisson, A study on the flicker of commercial lamps, Light Eng., 20, 25-33 (2012).