DOI QR코드

DOI QR Code

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul (Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University) ;
  • Ahammed, Akash (Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University) ;
  • Khan, Md. Sharif (Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University) ;
  • Ashik, Sheikh Abdullah Al (Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University) ;
  • Islam, Md. Shariful (University of Kentucky) ;
  • Hossain, Mohammad Uzzal (Bioinformatics Division, National Institute of Biotechnology)
  • 투고 : 2021.11.26
  • 심사 : 2022.01.08
  • 발행 : 2022.03.31

초록

Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

키워드

과제정보

We are very grateful to the book of Gobeshonay Bioinformatics-1st Part.

참고문헌

  1. Wang Y, Zhao R, Ji S, Li Z, Yu T, Li B, et al. Litorilituus sediminis gen. nov. sp. nov., isolated from coastal sediment of an amphioxus breeding zone in Qingdao, China. Antonie Van Leeuwenhoek 2013;104:423-430. https://doi.org/10.1007/s10482-013-9967-4
  2. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010;28:1248-1250. https://doi.org/10.1038/nbt1210-1248
  3. Naveed M, Tehreem S, Usman M, Chaudhry Z, Abbas G. Structural and functional annotation of hypothetical proteins of human adenovirus: prioritizing the novel drug targets. BMC Res Notes 2017;10:706. https://doi.org/10.1186/s13104-017-2992-z
  4. Bashir Z, Rizwan M, Mushtaq K, Munir A, Ali I. In silico structural and functional prediction of Phaseolus vulgaris hypothetical protein PHA VU_004G136400g. J Proteomics Bioinform 2017;10:207-211.
  5. Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, et al. Exploration of uncharted regions of the protein universe. PLoS Biol 2009;7:e1000205. https://doi.org/10.1371/journal.pbio.1000205
  6. Bharat Siva Varma P, Adimulam YB, Kodukula S. In silico functional annotation of a hypothetical protein from Staphylococcus aureus. J Infect Public Health 2015;8:526-532. https://doi.org/10.1016/j.jiph.2015.03.007
  7. Mudgal R, Sandhya S, Chandra N, Srinivasan N. De-DUFing the DUFs: deciphering distant evolutionary relationships of domains of unknown function using sensitive homology detection methods. Biol Direct 2015;10:38. https://doi.org/10.1186/s13062-015-0069-2
  8. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in "hypothetical proteins" of known structure. Structure 2008;16:1755-1763. https://doi.org/10.1016/j.str.2008.10.017
  9. Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013;8:e84263. https://doi.org/10.1371/journal.pone.0084263
  10. Mohan R, Venugopal S. Computational structural and functional analysis of hypothetical proteins of Staphylococcus aureus. Bioinformation 2012;8:722-728. https://doi.org/10.6026/97320630008722
  11. Mills CL, Beuning PJ, Ondrechen MJ. Biochemical functional predictions for protein structures of unknown or uncertain function. Comput Struct Biotechnol J 2015;13:182-191. https://doi.org/10.1016/j.csbj.2015.02.003
  12. Ferdous N, Reza MN, Emon MTH, Islam MS, Mohiuddin AKM, Hossain MU. Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2). Genomics Inform 2020;18:e28. https://doi.org/10.5808/GI.2020.18.3.e28
  13. Haase VH. The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int 2006;69:1302-1307. https://doi.org/10.1038/sj.ki.5000221
  14. Zhang Q, Yang H. The roles of VHL-dependent ubiquitination in signaling and cancer. Front Oncol 2012;2:35. https://doi.org/10.3389/fonc.2012.00035
  15. Blankenship C, Naglich JG, Whaley JM, Seizinger B, Kley N. Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity. Oncogene 1999;18:1529-1535. https://doi.org/10.1038/sj/onc/1202473
  16. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res 2008;36:W5-W9. https://doi.org/10.1093/nar/gkn201
  17. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31:365-370. https://doi.org/10.1093/nar/gkg095
  18. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019;47:W636-W641. https://doi.org/10.1093/nar/gkz268
  19. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009;25:1189-1191. https://doi.org/10.1093/bioinformatics/btp033
  20. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
  21. Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem 1980;88:1895-1898.
  22. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol 1982;157:105-132. https://doi.org/10.1016/0022-2836(82)90515-0
  23. Guruprasad K, Reddy BV, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 1990;4:155-161. https://doi.org/10.1093/protein/4.2.155
  24. Geourjon C, Deleage G. SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 1995;11:681-684.
  25. McGuffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics 2000;16:404-405. https://doi.org/10.1093/bioinformatics/16.4.404
  26. Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol 2018;430:2237-2243. https://doi.org/10.1016/j.jmb.2017.12.007
  27. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381-3385. https://doi.org/10.1093/nar/gkg520
  28. Laskowski RA, Watson JD, Thornton JM. ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 2005;33:W89-W93. https://doi.org/10.1093/nar/gki414
  29. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 1993;26:283-291. https://doi.org/10.1107/s0021889892009944
  30. Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 1993;2:1511-1519. https://doi.org/10.1002/pro.5560020916
  31. Kihara D, Chen H, Yang YD. Quality assessment of protein structure models. Curr Protein Pept Sci 2009;10:216-228. https://doi.org/10.2174/138920309788452173
  32. Eisenberg D, Luthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 1997;277:396-404. https://doi.org/10.1016/S0076-6879(97)77022-8
  33. Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res 2018;46:W363-W367. https://doi.org/10.1093/nar/gky473
  34. Savojardo C, Martelli PL, Fariselli P, Profiti G, Casadio R. BUSCA: an integrative web server to predict subcellular localization of proteins. Nucleic Acids Res 2018;46:W459-W466. https://doi.org/10.1093/nar/gky320
  35. Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004;13:1402-1406. https://doi.org/10.1110/ps.03479604
  36. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSO-RTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  37. Shen HB, Chou KC. Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. J Theor Biol 2010;264:326-333. https://doi.org/10.1016/j.jtbi.2010.01.018
  38. Imai K, Asakawa N, Tsuji T, Akazawa F, Ino A, Sonoyama M, et al. SOSUI-GramN: high performance prediction for sub-cellular localization of proteins in gram-negative bacteria. Bioinformation 2008;2:417-421. https://doi.org/10.6026/97320630002417
  39. Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524. https://doi.org/10.1093/bioinformatics/bti309
  40. Hiller K, Grote A, Scheer M, Munch R, Jahn D. PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res 2004;32:W375-W379. https://doi.org/10.1093/nar/gkh378
  41. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 2019;37:420-423. https://doi.org/10.1038/s41587-019-0036-z
  42. Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 2017;33:3098-3100. https://doi.org/10.1093/bioinformatics/btx345
  43. Mitaku S, Hirokawa T. Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length. Protein Eng 1999;12:953-957. https://doi.org/10.1093/protein/12.11.953
  44. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17:849-850. https://doi.org/10.1093/bioinformatics/17.9.849
  45. Moller S, Croning MD, Apweiler R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 2001;17:646-653. https://doi.org/10.1093/bioinformatics/17.7.646
  46. Wagner M, Adamczak R, Porollo A, Meller J. Linear regression models for solvent accessibility prediction in proteins. J Comput Biol 2005;12:355-369. https://doi.org/10.1089/cmb.2005.12.355
  47. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res 2020;48:D265-D268. https://doi.org/10.1093/nar/gkz991
  48. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427-D432. https://doi.org/10.1093/nar/gky995
  49. Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res 2021;49:D458-D460. https://doi.org/10.1093/nar/gkaa937
  50. Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021;49:D344-D354. https://doi.org/10.1093/nar/gkaa977
  51. Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol 2001;313:903-919. https://doi.org/10.1006/jmbi.2001.5080
  52. Pandurangan AP, Stahlhacke J, Oates ME, Smithers B, Gough J. The SUPERFAMILY 2. 0 database: a significant proteome update and a new webserver. Nucleic Acids Res 2019;47:D490-D494. https://doi.org/10.1093/nar/gky1130
  53. Pandit SB, Bhadra R, Gowri VS, Balaji S, Anand B, Srinivasan N. SUPFAM: a database of sequence superfamilies of protein domains. BMC Bioinformatics 2004;5:28. https://doi.org/10.1186/1471-2105-5-28
  54. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2016;10:845-858. https://doi.org/10.1038/nprot.2015.053
  55. Sillitoe I, Dawson N, Lewis TE, Das S, Lees JG, Ashford P, et al. CATH: expanding the horizons of structure-based functional annotations for genome sequences. Nucleic Acids Res 2019;47:D280-D284. https://doi.org/10.1093/nar/gky1097
  56. Shen HB, Chou KC. Predicting protein fold pattern with functional domain and sequential evolution information. J Theor Biol 2009;256:441-446. https://doi.org/10.1016/j.jtbi.2008.10.007
  57. Gruber M, Soding J, Lupas AN. Comparative analysis of coiled-coil prediction methods. J Struct Biol 2006;155:140-145. https://doi.org/10.1016/j.jsb.2006.03.009
  58. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47:D607-D613. https://doi.org/10.1093/nar/gky1131
  59. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, et al. Protein identification and analysis tools on the ExPASy server. In: The Proteomics Protocols Handbook (Walker JM, ed.). Totowa: Humana Press, 2005. pp. 571-607.
  60. Montgomerie S, Cruz JA, Shrivastava S, Arndt D, Berjanskii M, Wishart DS. PROTEUS2: a web server for comprehensive protein structure prediction and structure-based annotation. Nucleic Acids Res 2008;36:W202-W209. https://doi.org/10.1093/nar/gkn255
  61. Hasan MA, Mazumder MH, Chowdhury AS, Datta A, Khan MA. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code Biol Med 2015;10:7. https://doi.org/10.1186/s13029-015-0037-3
  62. Butt AM, Batool M, Tong Y. Homology modeling, comparative genomics and functional annotation of Mycoplasma genitalium hypothetical protein MG_237. Bioinformation 2011;7:299-303. https://doi.org/10.6026/007/97320630007299
  63. Hooda V, Gundala PB, Chinthala P. Sequence analysis and homology modeling of peroxidase from Medicago sativa. Bioinformation 2012;8:974-979. https://doi.org/10.6026/97320630008974
  64. Messaoudi A, Belguith H, Ben Hamida J. Three-dimensional structure of Arabidopsis thaliana lipase predicted by homology modeling method. Evol Bioinform Online 2011;7:99-105.
  65. Farhan H, Rabouille C. Signalling to and from the secretory pathway. J Cell Sci 2011;124:171-180. https://doi.org/10.1242/jcs.076455
  66. Kaelin WG Jr. Treatment of kidney cancer. Cancer 2009;115:2262-2272. https://doi.org/10.1002/cncr.24232
  67. Clark PE. The role of VHL in clear-cell renal cell carcinoma and its relation to targeted therapy. Kidney Int 2009;76:939-945. https://doi.org/10.1038/ki.2009.296
  68. Susmi TF, Rahman A, Khan MMR, Yasmin F, Islam MS, Nasif O, et al. Prognostic and clinicopathological insights of phosphodiesterase 9A gene as novel biomarker in human colorectal cancer. BMC Cancer 2021;21:577. https://doi.org/10.1186/s12885-021-08332-3