DOI QR코드

DOI QR Code

Whole-genome sequence analysis through online web interfaces: a review

  • Gunasekara, A.W.A.C.W.R. (Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University) ;
  • Rajapaksha, L.G.T.G. (Veterinary Medical Center and College of Veterinary Medicine, Jeonbuk National University) ;
  • Tung, T.L. (Department of Botany, Dagon University)
  • Received : 2020.06.11
  • Accepted : 2022.01.01
  • Published : 2022.03.31

Abstract

The recent development of whole-genome sequencing technologies paved the way for understanding the genomes of microorganisms. Every whole-genome sequencing (WGS) project requires a considerable cost and a massive effort to address the questions at hand. The final step of WGS is data analysis. The analysis of whole-genome sequence is dependent on highly sophisticated bioinformatics tools that the research personal have to buy. However, many laboratories and research institutions do not have the bioinformatics capabilities to analyze the genomic data and therefore, are unable to take maximum advantage of whole-genome sequencing. In this aspect, this study provides a guide for research personals on a set of bioinformatics tools available online that can be used to analyze whole-genome sequence data of bacterial genomes. The web interfaces described here have many advantages and, in most cases exempting the need for costly analysis tools and intensive computing resources.

Keywords

Acknowledgement

The authors would like to convey their thanks to software developers, who originally developed the WGS related bioinformatics tools.

References

  1. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977;74:5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  2. Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res 1979;6:2601-2610. https://doi.org/10.1093/nar/6.7.2601
  3. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995;269:496-512. https://doi.org/10.1126/science.7542800
  4. Austin CP. The impact of the completed human genome sequence on the development of novel therapeutics for human disease. Annu Rev Med 2004;55:1-13. https://doi.org/10.1146/annurev.med.55.091902.104426
  5. Hood L, Rowen L. The Human Genome Project: big science transforms biology and medicine. Genome Med 2013;5:79. https://doi.org/10.1186/gm483
  6. Chattopadhyay GP. Technologies in the Era of Singularity. Chennai: Notion Press, 2018.
  7. Saraswathy N, Ramalingam P. Concepts and Techniques in Genomics and Proteomics. Amsterdam: Elsevier, 2011. pp. 77-159.
  8. Kwong JC, McCallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology 2015;47:199-210. https://doi.org/10.1097/PAT.0000000000000235
  9. Oakeson KF, Wagner JM, Mendenhall M, Rohrwasser A, Atkinson-Dunn R. Bioinformatic analyses of whole-genome sequence data in a public health laboratory. Emerg Infect Dis 2017;23:1441-1445. https://doi.org/10.3201/eid2309.170416
  10. Abril JF, Castellano S. Genome annotation. In: Encyclopedia of Bioinformatics and Computational Biology (Ranganathan S, Gribskov M, Nakai K, Schonbach C, eds.). Oxford: Academic Press, 2019. pp. 195-209.
  11. Koonin EV, Galperin MY. Genome annotation and analysis. In: Sequence - Evolution - Function: Computational Approaches in Comparative Genomics (Koonin EV, Galperin MY, eds.). Boston: Kluwer Academic Press, 2003. pp. 193-226.
  12. Ekblom R, Wolf JB. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 2014;7:1026-1042. https://doi.org/10.1111/eva.12178
  13. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75. https://doi.org/10.1186/1471-2164-9-75
  14. Robles JC, Koreen L, Park S, Perlin DS. Multilocus sequence typing is a reliable alternative method to DNA fingerprinting for discriminating among strains of Candida albicans. J Clin Microbiol 2004;42:2480-2488. https://doi.org/10.1128/JCM.42.6.2480-2488.2004
  15. Ibarz Pavon AB, Maiden MC. Multilocus sequence typing. In: Molecular Epidemiology of Microorganisms, Vol. 551 (Caugant DA, ed.). New York: Humana Press, 2009. pp. 129-140.
  16. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012;50:1355-1361. https://doi.org/10.1128/JCM.06094-11
  17. Aanensen DM, Spratt BG. The multilocus sequence typing network: mlst.net. Nucleic Acids Res 2005;33:W728-W733. https://doi.org/10.1093/nar/gki415
  18. Bryant J, Chewapreecha C, Bentley SD. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 2012;7:1283-1296. https://doi.org/10.2217/fmb.12.108
  19. Pightling AW, Pettengill JB, Luo Y, Baugher JD, Rand H, Strain E. Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations. Front Microbiol 2018;9:1482. https://doi.org/10.3389/fmicb.2018.01482
  20. Schurch AC, Siezen RJ. Genomic tracing of epidemics and disease outbreaks. Microb Biotechnol 2010;3:628-633. https://doi.org/10.1111/j.1751-7915.2010.00224.x
  21. Kaas RS, Leekitcharoenphon P, Aarestrup FM, Lund O. Solving the problem of comparing whole bacterial genomes across different sequencing platforms. PLoS One 2014;9:e104984. https://doi.org/10.1371/journal.pone.0104984
  22. Kovanen SM, Kivisto RI, Rossi M, Schott T, Karkkainen UM, Tuuminen T, et al. Multilocus sequence typing (MLST) and whole-genome MLST of Campylobacter jejuni isolates from human infections in three districts during a seasonal peak in Finland. J Clin Microbiol 2014;52:4147-4154. https://doi.org/10.1128/JCM.01959-14
  23. Liu YY, Lin JW, Chen CC. cano-wgMLST_BacCompare: a bacterial genome analysis platform for epidemiological investigation and comparative genomic analysis. Front Microbiol 2019;10:1687. https://doi.org/10.3389/fmicb.2019.01687
  24. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 2018;9:5114. https://doi.org/10.1038/s41467-018-07641-9
  25. Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 2009;106:19126-19131. https://doi.org/10.1073/pnas.0906412106
  26. Richter M, Rossello-Mora R, Oliver Glockner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929-931. https://doi.org/10.1093/bioinformatics/btv681
  27. Peterson JW. Bacterial pathogenesis. In: Medical Microbiology (Baron S, ed.). Galveston: University of Texas Medical Branch at Galveston, 1996.
  28. Chen L, Zheng D, Liu B, Yang J, Jin Q. VFDB 2016: hierarchical and refined dataset for big data analysis: 10 years on. Nucleic Acids Res 2016;44:D694-D697. https://doi.org/10.1093/nar/gkv1239
  29. Holmes RK, Jobling MG. Genetics. In: Medical Microbiology (Baron S, ed.). Galveston: University of Texas Medical Branch at Galveston, 1996.
  30. Brussow H, Canchaya C, Hardt WD. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 2004;68:560-602. https://doi.org/10.1128/MMBR.68.3.560-602.2004
  31. Fortier LC, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 2013;4:354-365. https://doi.org/10.4161/viru.24498
  32. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 2016;44:W16-W21. https://doi.org/10.1093/nar/gkw387
  33. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000;28:33-36. https://doi.org/10.1093/nar/28.1.33
  34. Galperin MY, Kristensen DM, Makarova KS, Wolf YI, Koonin EV. Microbial genome analysis: the COG approach. Brief Bioinform 2019;20:1063-1070. https://doi.org/10.1093/bib/bbx117
  35. Brown TA. Genomes. 2nd ed. Oxford: Wiley-Liss, 2002.
  36. Stothard P, Grant JR, Van Domselaar G. Visualizing and comparing circular genomes using the CGView family of tools. Brief Bioinform 2019;20:1576-1582. https://doi.org/10.1093/bib/bbx081
  37. Fitz-Gibbon ST, House CH. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 1999;27:4218-4222. https://doi.org/10.1093/nar/27.21.4218
  38. Zuo G, Hao B. CVTree3 Web Server for Whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015;13:321-331. https://doi.org/10.1016/j.gpb.2015.08.004
  39. Wyres KL, Conway TC, Garg S, Queiroz C, Reumann M, Holt K, et al. WGS analysis and interpretation in clinical and public health microbiology laboratories: what are the requirements and how do existing tools compare? Pathogens 2014;3:437-458. https://doi.org/10.3390/pathogens3020437
  40. Yang Q, Dong X, Xie G, Fu S, Zou P, Sun J, et al. Comparative genomic analysis unravels the transmission pattern and intra-species divergence of acute hepatopancreatic necrosis disease (AH-PND)-causing Vibrio parahaemolyticus strains. Mol Genet Genomics 2019;294:1007-1022. https://doi.org/10.1007/s00438-019-01559-7
  41. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, et al. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 2019;11:10. https://doi.org/10.1186/s13099-019-0290-0
  42. Lopez-Fernandez S, Sonego P, Moretto M, Pancher M, Engelen K, Pertot I, et al. Whole-genome comparative analysis of virulence genes unveils similarities and differences between endophytes and other symbiotic bacteria. Front Microbiol 2015;6:419. https://doi.org/10.3389/fmicb.2015.00419
  43. de Been M, Pinholt M, Top J, Bletz S, Mellmann A, van Schaik W, et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J Clin Microbiol 2015;53:3788-3797. https://doi.org/10.1128/JCM.01946-15