DOI QR코드

DOI QR Code

Morphology of a Larval Atlantic Footballfish Himantolophus groenlandicus Reinhardt, 1837 (Lophiiformes: Himantolophidae) Identified by Complete Mitochondrial DNA

미토콘드리아 전장 유전체로 동정한 아귀목 Himantolophus groenlandicus 자어의 형태적 특징

  • Choi, Hae-young (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology) ;
  • Jang, Yo-soon (East Sea Environment Research Center, Korea Institute of Ocean Science & Technology) ;
  • Kim, Sung (Marine Ecosystem Research Center, Korea Institute of Ocean Science & Technology)
  • 최해영 (한국해양과학기술원 해양생태연구센터) ;
  • 장요순 (한국해양과학기술원 동해환경연구센터) ;
  • 김성 (한국해양과학기술원 해양생태연구센터)
  • Received : 2022.02.04
  • Accepted : 2022.02.26
  • Published : 2022.03.31

Abstract

A larva of the deep-sea angler fish, Himantolophus groenlandicus (2.2 mm BL), identified based on the complete mitochondrial DNA sequence, was collected at the surface of the western North Pacific. The postflexion stage larva had a round body, small teeth, incipient dorsal fin rays, eyes slightly recessed in the lower part, and melanophores on the gills and parietal and dorsal regions. These morphological features differ from a description of a larva reported as the same species with similar size (2.1 mm BL). The genetic and morphological information of our specimen should be useful for identifying larval H. groenlandicus.

북서태평양 표층에서 채집한 후기 자어 (2.2 mm BL)의 미토콘드리아 전장 유전체를 근거로 Himantolophus groenlandicus로 동정하였다. 후기 자어는 둥근 몸통, 작은 이빨, 발달하기 시작한 등 지느러미, 아래 부분이 들어간 눈, 그리고 지느러미, 정수리, 등 부분에 분포하는 흑색소포를 가졌다. 이러한 특징은 크기가 유사한 동종으로 보고된 자어(2.1 mm BL)와 차이가 컸다. 본 연구 자어의 유전적, 형태적 특징은 유사종의 동정에 유용할 것이다.

Keywords

Acknowledgement

This study was funded by the Korea Institute of Ocean Science and Technology (PEA0012). We would like to thank anonymous reviewers for their constructive comments that helped improve this manuscript.

References

  1. Avis, J.C. 1994. Molecular markers, natural history and evolution. Springer, Boston, U.S.A., 511pp.
  2. Bertelsen, E. 1951. The ceratioid fishes: Ontogeny, taxonomy, distribution and biology. Dana Report, 39: 1-276.
  3. Chagas, A.T.D.A., S. Ludwig, J.D.S.M. Pimentel, N.L. de Abreu, D.L. Nunez-Rodriguez, H.G. Leal and E. Kalapothakis. 2020. Use of complete mitochondrial genome sequences to identify barcoding markers for groups with low genetic distance. Mitochondrial DNA A DNA Mapp. Seq. Anal., 31: 139-146. https://doi.org/10.1080/24701394.2020.1748609.
  4. Choi, H.Y., J.N. Oh and S. Kim. 2018. Genetic identification of eggs from four species of Ophichthidae and Congridae (Anguilliformes) in the northern East China Sea. PLOS ONE, 13: e0195382. https://doi.org/10.1371/journal.pone.0195382.
  5. Choi, H.Y., Y.S. Jang, J.N. Oh and S. Kim. 2020. Morphology of a larval Hammerjaw Omosudis lowii Gunther 1887 (Aulopiformes, Omosudidae) identified by partial mitochondrial 12S rRNA gene analysis. Korean J. Ichthyol., 32: 239-244. https://doi.org/10.35399/ISK.32.4.5.
  6. Cowen, R.K. and S. Sponaugle. 2009. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci., 1: 443-466. https://doi.org/10.1146/annurev.marine.010908.163757.
  7. Fahay, M.P. 2007. Early stages of fishes in the Western North Atlantic Ocean: (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras). Northwest Atlantic fisheries organization, Nova Scotia, Canada, 1696pp.
  8. Guerreiro, M.A., F. Martinho, J. Baptista, F. Costa, M.A. Pardal and A.L. Primo. 2021. Function of estuaries and coastal areas as nursery grounds for marine fish early life stages. Mar. Environ. Res., 170: 105408. https://doi.org/10.1016/j.marenvres.2021.105408.
  9. Han, S.H., M.J. Kim and C.B. Song. 2015. Molecular identification and distribution pattern of fish eggs collected around Jejudo Island. Korean J. Ichthyol., 27: 284-292.
  10. Hebert, P.D., A. Cywinska, S.L. Ball and J.R. deWaard. 2003. Biological identifications through DNA barcodes. Proc. Biol. Sci., 270: 313-321. https://doi.org/10.1098/rspb.2002.2218.
  11. Hunter, J.R. 1984. Synopsis of culture methods for marine fish larvae. In: Moser, H.G., W.J. Richards, D.M. Cohen, M.P. Fahay, A.W. Kendall and S.L. Richardson (eds.), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists, Kansas, U.S.A., pp. 24-27.
  12. Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton, P. Meintjes and A. Drummond. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28: 1647-1649. https://doi.org/10.1093/bioinformatics/bts199.
  13. Kendall, A.W., E.H. Ahlstrom and H.G. Moser. 1984. Early life history stages of fishes and their characters. In: Moser, H.G., W.J. Richards, D.M. Cohen, M.P. Fahay, A.W. Kendall and S.L. Richardson (eds.), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists, Kansas, U.S.A., pp. 11-22.
  14. Kim, S., C.G. Kim, J.N. Oh, B.J. Kim, H.S. Seo, W.S. Kim and Y.H. Lee. 2008. Genetic similarity between the South Atlantic and the western North Pacific Maurolicus (Stomiiformes: Actinopterygii) taxa, M. walvisensis Parin & Kobyliansky and M. japonicus Ishikawa: evidence for synonymy?. J. Fish. Biol., 72: 1202-1214. https://doi.org/10.1111/j.1095-8649.2007.01786.x.
  15. Ko, H.L., Y.T. Wang, T.S. Chiu, M.A. Lee, M.Y. Leu, K.Z. Chang, W.Y. Chen and K.T. Shao. 2013. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLOS ONE, 8: e53451. https://doi.org/10.1371/journal.pone.0053451.
  16. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35: 1547-1549. https://doi.org/10.1093/molbev/msy096.
  17. Leis, J.M. and B.M. Carson-Ewart. 2000. The larvae of Indo-Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Zuid-Holland, Netherlands, 580pp.
  18. Leis, J.M., A.C. Hay and A.G. Miskiewicz. 2004. Larval development of the rare Australian Aploactinid fish Matsubarichthys inusitatus (Pisces: Scorpaeniformes). Zool. Stud., 43: 580-588.
  19. Leis, J.M. 2014. Taxonomy and systematics of larval Indo-Pacific fishes: a review of progress since 1981. Ichthyol. Res., 62: 9-28. https://doi.org/10.1007/s10228-014-0426-7.
  20. Miya, M., T.W. Pietsch, J.W. Orr, R.J. Arnold, T.P. Satoh, A.M. Shedlock, H.C. Ho, M. Shimazaki, M. Yabe and M. Nishida. 2010. Evolutionary history of anglerfishes (Teleostei: Lophiiformes): a mitogenomic perspective. BMC Evol. Biol., 10: 1-27. https://doi.org/10.1186/1471-2148-10-58.
  21. Miya, M., Y. Sato, T. Fukunaga, T. Sado, J.Y. Poulsen, K. Sato, T. Minamoto, S. Yamamoto, H. Yamanaka, H. Araki, M. Kondoh and W. Iwasaki. 2015. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R. Soc. Open. Sci., 2: 150088. https://doi.org/10.1098/rsos.150088.
  22. Okiyama, M. 2014. An atlas of early stage fishes in Japan, 2nd edition. Tokai University Press, Hadano, Japan, 1896pp.
  23. Palumbi, S. 1996. Nucleic acids II: the polymerase chain reaction. In: Hillis, D.M., C. Moritz and B.K. Mable (eds.), Molecular Systematics. Sinauer Associates, Sunderland, U.K., pp. 205-247.
  24. Pietsch, T.W. 1986. Himantolophidae. In: Smith, M.M. and P.C. Heemstra (eds.), Smiths' sea fishes. Springer-Verlag, Berlin, Germany, 376pp.
  25. Powles, H. and D.F. Markle. 1984. Identification of larvae. In: Moser, H.G., W.J. Richards, D.M. Cohen, M.P. Fahay, A.W. Kendall and S.L. Richardson (eds.), Ontogeny and systematics of fishes. American Society of Ichthyologists and Herpetologists, Kansas, U.S.A., pp. 31-33.
  26. Priede, I.G. 2017. Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press, Cambridge, U.K., 504pp.
  27. Richards, W.J. 2005. Early stages of Atlantic fishes: an identification guide for the western central north Atlantic, Two Volume Set. CRC Press, Florida, U.S.A., 600pp.
  28. Rodriguez, J.M., F. Alemany and A. Garcia. 2017. A guide to the eggs and larvae of 100 common Western Mediterranean Sea bony fish species. FAO, Rome, Italy, 256pp.
  29. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.
  30. Smith, J.A., A.G. Miskiewicz, L.E. Beckley, J.D. Everett, V. Garcia, C.A. Gray, H. David, A.R. Jordan, J. Keane, A. Lara-Lopez, J.M. Leis, P.A. Matis, B.A. Muhling, F.J. Neira, A.J. Richardson, K.A. Smith, K.M. Swadling, A. Syahailatua, M.D. Taylor, P.D. van Ruth, T.M. Ward and I.M. Suthers. 2018. A database of marine larval fish assemblages in Australian temperate and subtropical waters. Sci. Data., 5: 1-8. https://doi.org/10.1038/sdata.2018.207.
  31. Tsukamoto, K. 1992. Discovery of the spawning area for Japanese eel. Nature, 356: 789-791. https://doi.org/10.1038/356789a0.
  32. Vinas, J. and S. Tudela. 2009. A validated methodology for genetic identification of tuna species(genus Thunnus). PLOS ONE, 4: e7606. https://doi.org/10.1371/journal.pone.0007606.
  33. Wakabayashi, K., C.H. Yang, J.Y. Shy, C.H. He and T.Y. Chan. 2017. Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda: Scyllaridae). J. Crustac. Biol., 37: 204-219. https://doi.org/10.1093/jcbiol/rux009.
  34. Ward, R.D., T.S. Zemlak, B.H. Innes, P.R. Last and P.D. Hebert. 2005. DNA barcoding Australias fish species. Philos. Trans. R. Soc. Lond. B Biol. Sci., 360: 1847-1857. https://doi.org/10.1098/rstb.2005.1716.