과제정보
이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1A2C1010125).
참고문헌
- Lee, K. H, 2007, Estimation method and improvement of agricultural water demand, Magazine of the Korean Society of Agricultural Engineers, 49(3): 4-11 (in Korean).
- Tong, L., Kang, S. and Zhang, L., 2007, Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China, Water Resour. Manag., 87(3): 241-250. doi: 10.1016/j.agwat.2006.07.013
- McVicar, T. T., Van Niel, T. G., Li, L., Hutchinson, M. F., Mu, X. and Liu, Z., 2007, Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences, J. Hydrol., 338(3-4): 196-220. doi:10.1016/j.jhydrol.2007.02.018
- Kuo, S. F., Ho, S. S. and Liu, C. W., 2006, Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan, Water Resour. Manag., 82(3): 433-451. doi:10.1016/j.agwat.2005.08.002
- Yoo, S. H., Choi, J. Y. and Jang, M. W., 2006, Estimation of paddy rice crop coefficients for FAO Penman-Monteith and modified Penman method. J. Korean Soc. Agric. Eng., 48(1): 13-23. doi:10.5389/KSAE.2006.48.1.013 (in Korean).
- Yun, D. K., Chung, S. O. and Kim, S. J., 2011, Climate change impacts on paddy water requirement, J. Korean Soc. Agric. Eng., 53(4): 39-47. doi:10.5389/KSAE.2011.53.4.037 (in Korean).
- Yoo, S. H., Choi, J. Y., Lee, S. H., Oh, Y. G. and Park, N. Y., 2012, The impacts of climate change on paddy water demand and unit duty of water using high-resolution climate scenarios, J. Korean Soc. Agric. Eng., 54(2): 15-26. doi:10.5389/KSAE.2012.54.2.015 (in Korean).
- Surendran, U., Sushanth, C. M., Mammen, G. and Joseph, E. J., 2015, Modelling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India, Aquatic Procedia, 4: 1211-1219. doi:10.1016/j.aqpro.2015.02.154
- Boonwichai, S., Shrestha, S., Babel, M. S., Weesakul, S. and Dattab, A., 2018, Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand, J. Clean. Prod., 198: 1157-1164. doi:10.1016/j.jclepro.2018.07.146
- Li, Y., Wang, H, Chen, Y., Deng, M., Li, Q., Wufu, A., Wang, D. and Ma, L., 2020, Estimation of regional irrigation water requirements and water balance in Xinjiang, China during 1995-2017, PeerJ, 8, doi:10.7717/peerj.8243
- Aydin, Y., 2022, Quantification of water requirement of some major crops under semi-arid climate in Turkey, PeerJ, 10. doi:10.7717/peerj.13696
- Jie, F., Fei, L. Li, S. Hao, K. Liu, L. and Peng, Y., 2022, Effects on net irrigation water requirement of joint distribution of precipitation and reference evapotranspiration, Agriculture, 12, 801. doi:10.3390/agriculture12060801
- Kim, D. H., Kim, T. S., Jung, H. C., Jeong, E. S., Lee, S. O. and Jung, C. S., 2020, A benchmarking of electricity industry for improving the integrated water resources management (IWRM) policy, J. Korea Water Resour. Assoc., 53(S-1): 785-795. doi:10.3741/JKWRA.2020.53.S-1.785 (in Korean).
- Park, C. K., Hwang, J. S. and Seo, Y. W., 2020, Improvement of agricultural water demand estimation focusing on paddy water demand, J. Korea Water Resour. Assoc., 53(11): 939-949. doi:10.3741/JKWRA.2020.53.11.939 (in Korean).
- Cho, W. J., Chae, G. S. and Choi, J. Y., 2020, Reforming agricultural water policy for integrated water resources management, P264, KREI (Korea rural economic institute): Naju, Jeonnam, Korea. ISBN:979-11-6149-471-5 93520.
- Park, T. S., 2022. The Difference between water management theory and reality for agricultural water, Rural resource, 64(2): 2-14 (in Korean).
- Kim, B. J. and Eun, J. H., 2020, Incorporating machine learning into public administration: the role of evidencebased decision-making, Korean Public Administration Review, 54(1): 261-285. doi:10.18333/ KPAR.54.1.261 (in Korean).
- Park, D. S., 2021, Toward digitalization of smart maintenance for water infrastructures. KSCE magazine, 69(3): 20-36 (in Korean).
- Geron, A., 2019. Hands-on machine learning with Scikitlearn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media, Inc., ISBN: 9781492032649
- Vapnik, V. N., 1999, An overview of statistical learning theory, IEEE Trans. Neural Networks, 10(5): 988-999. doi:10.1109/72.788640.
- Ahmad Yasmin, N. S., Abdul Wahab, N., Ismail, F. S., Musa, M. J., Halim, M. H. A. and Anuar, A. N., 2021, Support vector regression modelling of an aerobic granular sludge in sequential batch reactor, Membranes, 11, 554. doi:10.3390/membranes11080554
- Breiman, L., 2001, Random forests, Machine Learn, 45(1): 5-32. doi:10.1023/A:1010933404324.
- Strobl, C., Malley, J. and Tutz, G., 2009. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests, Psychol. Methods, 14(4): 323-348. doi:10.1037/a0016973
- Adnan, M. S. G., Rahman,, M. S., Ahmed, N., Ahmed, B., Rabbi, M. F. and Rahman, R. M., 2020, Improving spatial agreement in machine learning-based landslide susceptibility mapping, Remote Sens., 12(20), 3347. doi:10.3390/rs12203347
- Gonzalez, P. F., Bielza, C. and Larranaga, P., 2019, Random forests for regression as a weighted sum of k-potential nearest neighbors, IEEE Access, 7: 25660-25672. doi:10.1109/ACCESS.2019.2900755
- Aldrich, C., 2020, Process variable importance analysis by use of random forests in a shapley regression framework, Minerals, 10(5), 420. doi:10.3390/min10050420
- Yokoyama, A. and Yamaguchio, N., 2020, Optimal hyperparameters for random forest to predict leakage current alarm on premises, E3S Web Conf. 152, 03003. doi:10.1051/e3sconf/202015203003
- Isabona, J., Imoize, A. L. and Kim, Y., 2022, Machine learning-based boosted regression ensemble combined with hyperparameter tuning for optimal adaptive learning, Sensors, 22(10), 3776. doi: 10.3390/s22103776
- Scikit-learn user guide 1.1.2, Available online: https://scikit-learn.org/stable/user_guide.html. (accessed on 1 May 2022).
- Yu, C. and Chen, J., 2020, Landslide susceptibility mapping using the slope unit for Southeastern Helong City, Jilin Province, China: A comparison of ANN and SVM, Symmetry, 12(6), 1047. doi:10.3390/sym12061047
- Xia, D., Tang, H., Sun, S., Tang, C. and Zhang, B., 2022, Landslide susceptibility mapping based on the germinal center optimization algorithm and support vector classification, Remote Sens., 14, 112707. doi:10.3390/rs14112707
- Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S. and Milad, A., 2021, Artificial neural networks based optimization techniques: A review, Electronics, 10, 2689. doi:10.3390/electronics10212689
- Wysocki, M. and Slepaczuk, R., 2022, Artificial neural networks performance in WIG20 index options pricing, Entropy, 24, 35. doi: 10.3390/e24010035
- Chicco, D., Warrens, M. J. and Jurman, G., 2021, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput. Sci., 7, e623. doi:10.7717/peerj-cs.623
- Bergstra, J. and Bengio, Y., 2012, Random search for hyperparameter optimization, J. Mach. Learn. Res., 13(10): 281-305, doi:10.5555/2188385.2188395
- Yang, L. and Shami, A., 2020, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing, 415: 295-316, doi:10.1016/j.neucom.2020.07.061
- Ponce, V. M. and Hawkins, R. H., 1996, Runoff Curve Number: Has It Reached Maturity?, J. Hhydraul. Eng., 1(1): 11-19. doi:10.1061/(ASCE)1084-0699(1996)1:1(11)
- Rodriguez-Galiano, V. F., Ghimire, B. Rogan, J. Chica-Olmo, M. and Rigol-Sanchez, J. P., 2012, An Assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67: 93-104. doi:10.1016/j.isprsjprs.2011.11.002
- Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M. and Chica-Rivas, M., 2015, Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines, Ore Geology Reviews, 71: 804-818. doi: 10.1016/j.oregeorev.2015.01.001
- Stathakis, D., 2009, How many hidden layers and nodes?, International Journal of Remote Sensing, 30(8). doi:10.1080/01431160802549278
- Sheela, K. G. and Deepa, S. N., 2013, Review on methods to fix number of hidden neurons in neural networks, Mathematical Problems in Engineering, doi:10.1155/2013/425740
- Lv, Y., Le, Q. T. Bui, H. B. Bui, X. N. Nguyen, H. Nguyen-Thoi, T. Dou, J. and Song, Z., 2020, A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer, Appl. Sci., 10, doi:10.3390/app10020635
- Nguyen, H., Bui, X. N. Bui, H. B. and Mai, N. L., 2018, A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam, Neural Comput. Appl., 32: 3939-3955. doi:10.1007/s00521-018-3717-5
- Heaton, J., 2008, Introduction to neural networks with java: 2nd Edition, Heaton Research, Inc., ISBN:9781604390087.
- Petropoulos, G. P., Kontoes, C. C. and Keramitsoglou, I., 2012, Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery, Int. J. Appl. Earth. Obs. Geoinf., 18: 344-355. doi: 10.1016/j.jag.2012.02.004