DOI QR코드

DOI QR Code

머신러닝 기법을 활용한 논 순용수량 예측

Prediction of Net Irrigation Water Requirement in paddy field Based on Machine Learning

  • 김수진 (서울대학교 그린바이오과학기술연구원 ) ;
  • 배승종 (서울대학교 그린바이오과학기술연구원 ) ;
  • 장민원 (경상국립대학교 지역시스템공학과)
  • Kim, Soo-Jin (Institute of Green Bio Science and Technology, Seoul National University) ;
  • Bae, Seung-Jong (Institute of Green Bio Science and Technology, Seoul National University) ;
  • Jang, Min-Won (Department of Agricultural Engineering, Institute of Agriculture and Life Science, Gyeongsang National University)
  • 투고 : 2022.11.18
  • 심사 : 2022.11.23
  • 발행 : 2022.11.30

초록

This study tested SVM(support vector machine), RF(random forest), and ANN(artificial neural network) machine-learning models that can predict net irrigation water requirements in paddy fields. For the Jeonju and Jeongeup meteorological stations, the net irrigation water requirement was calculated using K-HAS from 1981 to 2021 and set as the label. For each algorithm, twelve models were constructed based on cumulative precipitation, precipitation, crop evapotranspiration, and month. Compared to the CE model, the R2 of the CEP model was higher, and MAE, RMSE, and MSE were lower. Comprehensively considering learning performance and learning time, it is judged that the RF algorithm has the best usability and predictive power of five-days is better than three-days. The results of this study are expected to provide the scientific information necessary for the decision-making of on-site water managers is expected to be possible through the connection with weather forecast data. In the future, if the actual amount of irrigation and supply are measured, it is necessary to develop a learning model that reflects this.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1A2C1010125).

참고문헌

  1. Lee, K. H, 2007, Estimation method and improvement of agricultural water demand, Magazine of the Korean Society of Agricultural Engineers, 49(3): 4-11 (in Korean). 
  2. Tong, L., Kang, S. and Zhang, L., 2007, Temporal and spatial variations of evapotranspiration for spring wheat in the Shiyang river basin in northwest China, Water Resour. Manag., 87(3): 241-250. doi: 10.1016/j.agwat.2006.07.013 
  3. McVicar, T. T., Van Niel, T. G., Li, L., Hutchinson, M. F., Mu, X. and Liu, Z., 2007, Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences, J. Hydrol., 338(3-4): 196-220. doi:10.1016/j.jhydrol.2007.02.018 
  4. Kuo, S. F., Ho, S. S. and Liu, C. W., 2006, Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in ChiaNan Irrigation Association, Taiwan, Water Resour. Manag., 82(3): 433-451. doi:10.1016/j.agwat.2005.08.002 
  5. Yoo, S. H., Choi, J. Y. and Jang, M. W., 2006, Estimation of paddy rice crop coefficients for FAO Penman-Monteith and modified Penman method. J. Korean Soc. Agric. Eng., 48(1): 13-23. doi:10.5389/KSAE.2006.48.1.013 (in Korean). 
  6. Yun, D. K., Chung, S. O. and Kim, S. J., 2011, Climate change impacts on paddy water requirement, J. Korean Soc. Agric. Eng., 53(4): 39-47. doi:10.5389/KSAE.2011.53.4.037 (in Korean). 
  7. Yoo, S. H., Choi, J. Y., Lee, S. H., Oh, Y. G. and Park, N. Y., 2012, The impacts of climate change on paddy water demand and unit duty of water using high-resolution climate scenarios, J. Korean Soc. Agric. Eng., 54(2): 15-26. doi:10.5389/KSAE.2012.54.2.015 (in Korean). 
  8. Surendran, U., Sushanth, C. M., Mammen, G. and Joseph, E. J., 2015, Modelling the crop water requirement using FAO-CROPWAT and assessment of water resources for sustainable water resource management: A case study in Palakkad district of humid tropical Kerala, India, Aquatic Procedia, 4: 1211-1219. doi:10.1016/j.aqpro.2015.02.154 
  9. Boonwichai, S., Shrestha, S., Babel, M. S., Weesakul, S. and Dattab, A., 2018, Climate change impacts on irrigation water requirement, crop water productivity and rice yield in the Songkhram River Basin, Thailand, J. Clean. Prod., 198: 1157-1164. doi:10.1016/j.jclepro.2018.07.146 
  10. Li, Y., Wang, H, Chen, Y., Deng, M., Li, Q., Wufu, A., Wang, D. and Ma, L., 2020, Estimation of regional irrigation water requirements and water balance in Xinjiang, China during 1995-2017, PeerJ, 8, doi:10.7717/peerj.8243 
  11. Aydin, Y., 2022, Quantification of water requirement of some major crops under semi-arid climate in Turkey, PeerJ, 10. doi:10.7717/peerj.13696 
  12. Jie, F., Fei, L. Li, S. Hao, K. Liu, L. and Peng, Y., 2022, Effects on net irrigation water requirement of joint distribution of precipitation and reference evapotranspiration, Agriculture, 12, 801. doi:10.3390/agriculture12060801 
  13. Kim, D. H., Kim, T. S., Jung, H. C., Jeong, E. S., Lee, S. O. and Jung, C. S., 2020, A benchmarking of electricity industry for improving the integrated water resources management (IWRM) policy, J. Korea Water Resour. Assoc., 53(S-1): 785-795. doi:10.3741/JKWRA.2020.53.S-1.785 (in Korean). 
  14. Park, C. K., Hwang, J. S. and Seo, Y. W., 2020, Improvement of agricultural water demand estimation focusing on paddy water demand, J. Korea Water Resour. Assoc., 53(11): 939-949. doi:10.3741/JKWRA.2020.53.11.939 (in Korean). 
  15. Cho, W. J., Chae, G. S. and Choi, J. Y., 2020, Reforming agricultural water policy for integrated water resources management, P264, KREI (Korea rural economic institute): Naju, Jeonnam, Korea. ISBN:979-11-6149-471-5 93520. 
  16. Park, T. S., 2022. The Difference between water management theory and reality for agricultural water, Rural resource, 64(2): 2-14 (in Korean). 
  17. Kim, B. J. and Eun, J. H., 2020, Incorporating machine learning into public administration: the role of evidencebased decision-making, Korean Public Administration Review, 54(1): 261-285. doi:10.18333/ KPAR.54.1.261 (in Korean). 
  18. Park, D. S., 2021, Toward digitalization of smart maintenance for water infrastructures. KSCE magazine, 69(3): 20-36 (in Korean). 
  19. Geron, A., 2019. Hands-on machine learning with Scikitlearn, Keras, and TensorFlow, 2nd Edition, O'Reilly Media, Inc., ISBN: 9781492032649 
  20. Vapnik, V. N., 1999, An overview of statistical learning theory, IEEE Trans. Neural Networks, 10(5): 988-999. doi:10.1109/72.788640. 
  21. Ahmad Yasmin, N. S., Abdul Wahab, N., Ismail, F. S., Musa, M. J., Halim, M. H. A. and Anuar, A. N., 2021, Support vector regression modelling of an aerobic granular sludge in sequential batch reactor, Membranes, 11, 554. doi:10.3390/membranes11080554 
  22. Breiman, L., 2001, Random forests, Machine Learn, 45(1): 5-32. doi:10.1023/A:1010933404324. 
  23. Strobl, C., Malley, J. and Tutz, G., 2009. An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests, Psychol. Methods, 14(4): 323-348. doi:10.1037/a0016973 
  24. Adnan, M. S. G., Rahman,, M. S., Ahmed, N., Ahmed, B., Rabbi, M. F. and Rahman, R. M., 2020, Improving spatial agreement in machine learning-based landslide susceptibility mapping, Remote Sens., 12(20), 3347. doi:10.3390/rs12203347 
  25. Gonzalez, P. F., Bielza, C. and Larranaga, P., 2019, Random forests for regression as a weighted sum of k-potential nearest neighbors, IEEE Access, 7: 25660-25672. doi:10.1109/ACCESS.2019.2900755 
  26. Aldrich, C., 2020, Process variable importance analysis by use of random forests in a shapley regression framework, Minerals, 10(5), 420. doi:10.3390/min10050420 
  27. Yokoyama, A. and Yamaguchio, N., 2020, Optimal hyperparameters for random forest to predict leakage current alarm on premises, E3S Web Conf. 152, 03003. doi:10.1051/e3sconf/202015203003 
  28. Isabona, J., Imoize, A. L. and Kim, Y., 2022, Machine learning-based boosted regression ensemble combined with hyperparameter tuning for optimal adaptive learning, Sensors, 22(10), 3776. doi: 10.3390/s22103776 
  29. Scikit-learn user guide 1.1.2, Available online: https://scikit-learn.org/stable/user_guide.html. (accessed on 1 May 2022). 
  30. Yu, C. and Chen, J., 2020, Landslide susceptibility mapping using the slope unit for Southeastern Helong City, Jilin Province, China: A comparison of ANN and SVM, Symmetry, 12(6), 1047. doi:10.3390/sym12061047 
  31. Xia, D., Tang, H., Sun, S., Tang, C. and Zhang, B., 2022, Landslide susceptibility mapping based on the germinal center optimization algorithm and support vector classification, Remote Sens., 14, 112707. doi:10.3390/rs14112707 
  32. Abdolrasol, M. G. M., Hussain, S. M. S., Ustun, T. S., Sarker, M. R., Hannan, M. A., Mohamed, R., Ali, J. A., Mekhilef, S. and Milad, A., 2021, Artificial neural networks based optimization techniques: A review, Electronics, 10, 2689. doi:10.3390/electronics10212689 
  33. Wysocki, M. and Slepaczuk, R., 2022, Artificial neural networks performance in WIG20 index options pricing, Entropy, 24, 35. doi: 10.3390/e24010035 
  34. Chicco, D., Warrens, M. J. and Jurman, G., 2021, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, PeerJ Comput. Sci., 7, e623. doi:10.7717/peerj-cs.623 
  35. Bergstra, J. and Bengio, Y., 2012, Random search for hyperparameter optimization, J. Mach. Learn. Res., 13(10): 281-305, doi:10.5555/2188385.2188395 
  36. Yang, L. and Shami, A., 2020, On hyperparameter optimization of machine learning algorithms: Theory and practice, Neurocomputing, 415: 295-316, doi:10.1016/j.neucom.2020.07.061 
  37. Ponce, V. M. and Hawkins, R. H., 1996, Runoff Curve Number: Has It Reached Maturity?, J. Hhydraul. Eng., 1(1): 11-19. doi:10.1061/(ASCE)1084-0699(1996)1:1(11) 
  38. Rodriguez-Galiano, V. F., Ghimire, B. Rogan, J. Chica-Olmo, M. and Rigol-Sanchez, J. P., 2012, An Assessment of the effectiveness of a random forest classifier for land-cover classification, ISPRS J. Photogramm. Remote Sens., 67: 93-104. doi:10.1016/j.isprsjprs.2011.11.002 
  39. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M. and Chica-Rivas, M., 2015, Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines, Ore Geology Reviews, 71: 804-818. doi: 10.1016/j.oregeorev.2015.01.001 
  40. Stathakis, D., 2009, How many hidden layers and nodes?, International Journal of Remote Sensing, 30(8). doi:10.1080/01431160802549278 
  41. Sheela, K. G. and Deepa, S. N., 2013, Review on methods to fix number of hidden neurons in neural networks, Mathematical Problems in Engineering, doi:10.1155/2013/425740 
  42. Lv, Y., Le, Q. T. Bui, H. B. Bui, X. N. Nguyen, H. Nguyen-Thoi, T. Dou, J. and Song, Z., 2020, A comparative study of different machine learning algorithms in predicting the content of ilmenite in titanium placer, Appl. Sci., 10, doi:10.3390/app10020635 
  43. Nguyen, H., Bui, X. N. Bui, H. B. and Mai, N. L., 2018, A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam, Neural Comput. Appl., 32: 3939-3955. doi:10.1007/s00521-018-3717-5 
  44. Heaton, J., 2008, Introduction to neural networks with java: 2nd Edition, Heaton Research, Inc., ISBN:9781604390087. 
  45. Petropoulos, G. P., Kontoes, C. C. and Keramitsoglou, I., 2012, Land cover mapping with emphasis to burnt area delineation using co-orbital ALI and Landsat TM imagery, Int. J. Appl. Earth. Obs. Geoinf., 18: 344-355. doi: 10.1016/j.jag.2012.02.004