DOI QR코드

DOI QR Code

Analytical study of composite steel-concrete beams with external prestressing

  • Turini, Thiago T. (Department of Civil Engineering, Federal University of Espirito Santo) ;
  • Calenzani, Adenilcia F.G. (Department of Civil Engineering, Federal University of Espirito Santo)
  • Received : 2021.05.26
  • Accepted : 2022.02.23
  • Published : 2022.06.10

Abstract

Prestressed composite steel-concrete beams are still a technology restricted to repair sites of large-scale structures and spans. One of the reasons for that is the absence of standard frameworks and publications regarding their design and implementation. In addition, the primary normative codes do not address this subject directly, which might be related to a scarcity of papers indicating methods of design that would align the two technics, composite beams and external prestressing. In this context, this paper proposes methods to analyze the sizing of prestressed composite beams submitted to pre-tension and post-tension with a straight or polynomial layout cable. This inquiry inspected a hundred and twenty models of prestressed composite beams according to its prestressing technology and the eccentricity and value of the prestressing force. The evaluation also included the ratio between span and height of the steel profile, thickness and typology of the concrete slab, and layout of the prestressing cables. As for the results, it was observed that the eccentricity of the prestressing force doesn't significantly influence the bending resistance. In prestressed composite beams subjected to a sagging moment, the ratio L/d can reach 35 and 30 for steel-concrete composite slabs and solid concrete slabs, respectively. Considering the negative bending moment resistance, the value of the L/d ratio must be less than or equal to 25, regardless of the type of slab. When it comes to the value of the prestressing force, a variation greater than 10% causes a 2.6% increase in the positive bending moment resistance and a 4% decrease in the negative bending moment resistance. The pre-tensioned composite beams showed a superior response to flexural-compression and excessive compression limit states than the post-tensioned ones.

Keywords

References

  1. Associacao Brasileira de Normas Tecnicas-ABNT NBR 8800 (2008), Projeto de Estrutura de Aco E ee Estrutura Mista ee Aco E Concreto ee Edificios, Rio de Janeiro, Brasil.
  2. Associacao Brasileira de Normas Tecnicas-ABNT NBR 6118 (2014), Projeto de Estruturas de Concreto-Procedimento, Rio de Janeiro, Brazil.
  3. Associacao Brasileira de Normas Tecnicas-ABNT NBR 12655 (2015), Concreto de Cimento Portland-Preparo, Controle, Recebimento e Aceitacao-Procedimento, Rio de Janeiro, Brazil.
  4. Ayyub, B.M., Sohn, Y.G. and Saadatmanesh, H. (1990), "Prestressed composite girders under positive moment", J. Struct. Eng., 116(11), 2931-2951. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(2931).
  5. Chen, S., Wang, X. and Jia, Y. (2009), "A comparative study of continuous steel-concrete composite beams prestressed with external tendons: Experimental investigation", J. Constr. Steel Res., 65(7), 1480-1489. https://doi.org/10.1016/j.jcsr.2009.03.005.
  6. Daly, A.F. and Witarnawan, W. (1997), "Strengthening of bridges using external post-tensioning", Conference of Eastern Asia Society for Transportation Studies, Seoul, October.
  7. El-Sisi, A.A., Hassanin, A.I., Shabaan, F. and Elsheikh, A.I. (2021), "Effect of external post-tensioning on steel-concrete composite beams with partial connection", Eng. Struct., 247, 113130. https://doi.org/10.1016/j.engstruct.2021.113130.
  8. El-Zohairy, A. and Salim, H. (2017), "Parametric study for post-tensioned composite beams with external tendons", Adv. Struct. Eng., 20(10), 1433-1450. https://doi.org/10.1177/1369433216684352.
  9. El-Zohairy, A., Salim, H., Shaaban, H., Mustafa, S. and El-Shiny, A. (2015), "Finite-element modeling of externally posttensioned composite beams", J. Brigde Eng., 20(12), 04015018. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000756.
  10. Hassanin, A.I., Shabaan, F. and Elsheikh, A.I. (2021), "Cyclic loading behavior on strengthened composite beams using external post-tensioning tendons (experimental study)", Struct., 29, 1119-1136. https://doi.org/10.1016/j.istruc.2020.12.017.
  11. Hoadley, P.G. (1963), "Behavior of prestressed composite steel beams", J. Struct. Div., ASCE, 89(3), 21-34. https://doi.org/10.1061/JSDEAG.0000930.
  12. Lorenc, W. and Kubica, E. (2006), "Behavior of composite beams prestressed with external tendons: Experimental study", J. Constr. Steel Res., 62, 1353-1366. https://doi.org/10.1016/j.jcsr.2006.01.007.
  13. Lou, T., Lopes, S.M.R. and Lopes, A.V. (2016), "Numerical modeling of externally prestressed steel-concrete composite beams", J. Constr. Steel Res., 121, 229-236. https://doi.org/10.1016/j.jcsr.2016.02.008.
  14. Microsoft Office Excel (2013).
  15. Microsoft Visual Basic Express (2013).
  16. Nie, J.G., Cai, C.S., Zhou, T.R. and Li, Y. (2007), "Exprimental and analytical study of prestressed steel-concrete composite beams considering slip effect", J. Struct. Eng., 133(4), 530-540. https://doi.org//10.1061/(ASCE)0733-9445(2007)133:4(530).
  17. Pecce, M., Rossi, F., Bibbo, F.A. and Ceroni, F. (2012), "Experimental behavior of composite beams subjected to a hogging moment", Steel Compos. Struct., 12(5), 395-412. https://doi.org/10.12989/scs.2012.12.5.395.
  18. Regan, R.S. (1966), "An analytical study of the behavior of prestressed composite beams", M.S Thesis, Rice University, Houston, TX, USA.
  19. Saadatmanesh, H., Albrecht, P. and Ayyub, B.M. (1989), "Experimental study of prestressed composite beams", J. Struct. Eng., 115(9), 2348-2363. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2348).
  20. Strass, J.C. (1964), "An experimental and analytical study of prestressed composite beams", M.S Thesis, Rice University, Houston, TX, USA.
  21. Szilard, R. (1959), "Design of prestressed composite steel structures", J. Struct. Div., ASCE, 85(9), 97-123. https://doi.org/10.1061/JSDEAG.0000455.
  22. Turini, T.T. (2021), "Estudo analitico de vigas mistas de aco e concreto com protensao externa", M.S Thesis, Civil Engineering Department, UFES, Vitoria, ES.
  23. Uy, B. and Craine, S. (2004), "Static flexural behavior of externally post-tensioned steel-concrete composite beams", Adv. Struct. Eng., 7(1), 1-20. https://doi.org/10.1260/136943304322985729.
  24. Vasdravellis, G., Uy, B., Tan, E.L. and Kirland, B. (2015), "Behavior and design of composite beams subjected to sagging bending and axial compression", J. Constr. Steel Res., 110, 29-39. https://doi.org/10.1016/j.jcsr.2015.03.010.
  25. Zhou, W., Li, S., Huang, Z. and Jiang, L. (2016), "Distortional buckling of I-steel concrete composite beams in negative moment area", Steel Compos. Struct., 20(1), 57-70. https://doi.org/10.12989/scs.2016.20.1.057.
  26. Zhu, L., Ma, Q., Yan, W., Han, B. and Liu, W. (2021), "Effective width of steel-concrete composite beams under negative moments in service stages", Steel Compos. Struct., 38(4), 415-430. https://doi.org/10.12989/scs.2021.38.4.415.