DOI QR코드

DOI QR Code

비기환, 대칠기탕 및 목향빈랑환 열수 추출물에 의한 인간 간세포암종 HepG2 세포의 세포사멸 유도에 미치는 자가포식의 역할

The Role of Autophagy on the Induction of Apoptosis by Water Extracts of Bigihwan, Daechilgitang and Mokwhyangbinranghwan in HepG2 Human Hepatocellular Carcinoma Cells

  • 박상은 (동의대학교 한의과대학 간계내과학교실) ;
  • 홍수현 (동의대학교 한의과대학 생화학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실)
  • Park, Sang Eun (Department of Korean Internal Medicine, College of Korean Medicine, Dong-eui University) ;
  • Hong, Su Hyun (Department of Biochemistry, College of Korean Medicine, Dong-eui University) ;
  • Choi, Yung Hyun (Department of Biochemistry, College of Korean Medicine, Dong-eui University)
  • 투고 : 2022.04.14
  • 심사 : 2022.05.16
  • 발행 : 2022.05.31

초록

Objectives : In this study, the anticancer activity of water extracts of three herbal medicine formulas, Bigihwan (BGH), Daechilgitang (DCGT) and Mokwhyangbinranghwan (MHBRH) listed in Donguibogam, was evaluated in HepG2 cells, a human hepatocellular carcinoma cell line. Methods : We investigated whether the cell viability of HepG2 cells was inhibited by the treatment of water extracts of three prescriptions, and whether their viability inhibitory effect was related to the induction of apoptosis. In addition, the role of autophagy on the induction of apoptosis by the treatment of these extracts was investigated. Results : The anticancer activity of the three water extracts on HepG2 cells was due to induction of apoptosis, not necrosis. Among them, BGH activated the caspase-dependent intrinsic apoptosis pathway associated with mitochondrial dysfunction. However, autophagy was induced more than 2-fold in DCGT-treated HepG2 cells, and the anticancer activity of DCGT was enhanced 1.5-fold in the presence of an autophagy inhibitor, but was attenuated in BGH and MHBRH-treated cells. Conclusion : The results of this study indicate that DCGT-induced autophagy was involved in the inhibition of apoptosis, whereas autophagy by BGH and MHBRH was related to induction of apoptosis.

키워드

참고문헌

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209-49. https://doi.org/10.3322/caac.21660
  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. https://doi.org/10.3322/caac.21492
  3. Ikeda M, Morizane C, Ueno M, Okusaka T, Ishii H, Furuse J. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. Jpn J Clin Oncol. 2018;48:103-14. https://doi.org/10.1093/jjco/hyx180
  4. Yang JD, Heimbach JK. New advances in the diagnosis and management of hepatocellular carcinoma. BMJ. 2020;371:m3544. https://doi.org/10.1136/bmj.m3544
  5. Villanueva A. Hepatocellular carcinoma. N Engl J Med. 2019;380:1450-62. https://doi.org/10.1056/NEJMra1713263
  6. Grandhi MS, Kim AK, Ronnekleiv-Kelly SM, Kamel IR, Ghasebeh MA, Pawlik TM. Hepatocellular carcinoma: From diagnosis to treatment. Surg Oncol. 2016;25:74-85. https://doi.org/10.1016/j.suronc.2016.03.002
  7. Garcia-Pras E, Fernandez-Iglesias A, Gracia-Sancho J, Perez-Del-Pulgar S. Cell death in hepatocellular carcinoma: Pathogenesis and therapeutic opportunities. Cancers (Basel). 2021;14:48. https://doi.org/10.3390/cancers14010048
  8. Chen J, Wang X, Xia T, Bi Y, Liu B, Fu J, Zhu R. Molecular mechanisms and therapeutic implications of dihydromyricetin in liver disease. Biomed Pharmacother. 2021;142:111927. https://doi.org/10.1016/j.biopha.2021.111927
  9. Allaire M, Rautou PE, Codogno P, Lotersztajn S. Autophagy in liver diseases: Time for translation? J Hepatol. 2019;70:985-98. https://doi.org/10.1016/j.jhep.2019.01.026
  10. Sun EJ, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines. 2021;9:1639. https://doi.org/10.3390/biomedicines9111639
  11. Guicciardi ME, Gores GJ. Apoptosis: A mechanism of acute and chronic liver injury. Gut. 2005;54:1024-33. https://doi.org/10.1136/gut.2004.053850
  12. Hu B, An HM, Wang SS, Chen JJ, Xu L. Preventive and therapeutic effects of Chinese herbal compounds against hepatocellular carcinoma. Molecules. 2016;21:142. https://doi.org/10.3390/molecules21020142
  13. Kim SY, Hong SH, Choi SH, Cheong J, Choi YH. The anti-cancer effects of Bigihwan, Daechilgithang, and Mokwhyangbinranghwan ethanol extracts in human hepatocellular carcinoma cells. J Life Sci. 2020;30:460-67. https://doi.org/10.5352/JLS.2020.30.5.460
  14. Kim MY, Lee H, Hong SH, Park C, Choi YH. Comparison of anti-cancer potentials of water extracts of Bigihwan, Daechilgithang and Mokwhyangbinranghwan in human hepatocellular carcinoma cells. Herbal Formula Sci. 2020;28: 15-27. https://doi.org/10.14374/HFS.2020.28.1.15
  15. Qiu GH, Xie X, Xu F, Shi X, Wang Y, Deng L. Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 2015;67:1-12. https://doi.org/10.1007/s10616-014-9761-9
  16. Yu MH, Tsai MC, Wang CC, Wu SW, Chang YJ, Wu CH, Wang CJ. Mulberry leaf polyphenol extract and rutin induces autophagy regulated by p53 in human hepatoma HepG2 cells. Pharmaceuticals (Basel). 2021;14:1310. https://doi.org/10.3390/ph14121310
  17. Kim SM, Ha SE, Lee HJ, Rampogu S, Vetrivel P, Kim HH, Venkatarame Gowda Saralamma V, Lee KW, Kim GS. Sinensetin induces autophagic cell death through p53-related AMPK/mTOR signaling in hepatocellular carcinoma HepG2 cells. Nutrients. 2020;12:2462. https://doi.org/10.3390/nu12082462
  18. Cheng KC, Wang CJ, Chang YC, Hung TW, Lai CJ, Kuo CW, Huang HP. Mulberry fruits extracts induce apoptosis and autophagy of liver cancer cell and prevent hepatocarcinogenesis in vivo. J Food Drug Anal. 2020;28:84-93. https://doi.org/10.1016/j.jfda.2019.06.002
  19. Lee Y, Kwon YH. Regulation of apoptosis and autophagy by luteolin in human hepatocellular cancer Hep3B cells. Biochem Biophys Res Commun. 2019;517:617-22. https://doi.org/10.1016/j.bbrc.2019.07.073
  20. Lalier L, Vallette F, Manon S. Bcl-2 family members and the mitochondrial import machineries: The roads to death. Biomolecules. 2022;12:162. https://doi.org/10.3390/biom12020162
  21. Glab JA, Cao Z, Puthalakath H. Bcl-2 family proteins, beyond the veil. Int Rev Cell Mol Biol. 2020;351:1-22. https://doi.org/10.1016/bs.ircmb.2019.12.001
  22. Guerra-Castellano A, Marquez I, Perez-Mejias G, Diaz-Quintana A, De la Rosa MA, Diaz-Moreno I. Post-translational modifications of cytochrome c in cell life and disease. Int J Mol Sci. 2020;21:8483. https://doi.org/10.3390/ijms21228483
  23. Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 2017;3:857-70. https://doi.org/10.1016/j.trecan.2017.10.006
  24. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85-100. https://doi.org/10.1038/s41580-019-0173-8
  25. Kalpage HA, Bazylianska V, Recanati MA, Fite A, Liu J, Wan J, Mantena N, Malek MH, Podgorski I, Heath EI, Vaishnav A, Edwards BF, Grossman LI, Sanderson TH, Lee I, Huttemann M. Tissue-specific regulation of cytochrome c by post-translational modifications: Respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J. 2019;33:1540-53. https://doi.org/10.1096/fj.201801417R
  26. Boice A, Bouchier-Hayes L. Targeting apoptotic caspases in cancer. Biochim Biophys Acta Mol Cell Res. 2020;1867:118688. https://doi.org/10.1016/j.bbamcr.2020.118688
  27. Ugarte-Uribe B, Garcia-Saez AJ. Apoptotic foci at mitochondria: in and around Bax pores. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160217. https://doi.org/10.1098/rstb.2016.0217
  28. Dadsena S, King LE, Garcia-Saez AJ. Apoptosis regulation at the mitochondria membrane level. Biochim Biophys Acta Biomembr. 2021;1863: 183716. https://doi.org/10.1016/j.bbamem.2021.183716
  29. Henning RJ, Bourgeois M, Harbison RD. Poly(ADP-ribose) polymerase (PARP) and PARP inhibitors: Mechanisms of action and role in cardiovascular disorders. Cardiovasc Toxicol. 2018;18:493-506. https://doi.org/10.1007/s12012-018-9462-2
  30. Chmurska A, Matczak K, Marczak A. Two faces of autophagy in the struggle against cancer. Int J Mol Sci. 2021;22:2981. https://doi.org/10.3390/ijms22062981
  31. Thorburn A. Crosstalk between autophagy and apoptosis: Mechanisms and therapeutic implications. Prog Mol Biol Transl Sci. 2020;172:55-65. https://doi.org/10.1016/bs.pmbts.2020.04.023
  32. Yang J, Sun Y, Xu F, Liu W, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Autophagy and glycolysis independently attenuate silibinin-induced apoptosis in human hepatocarcinoma HepG2 and Hep3B cells. Hum Exp Toxicol. 2021;40:2048-62. https://doi.org/10.1177/09603271211017609
  33. Lou LL, Cheng ZY, Guo R, Yao GD, Song SJ. Alkaloids from Juglans mandshurica maxim induce distinctive cell death in hepatocellular carcinoma cells. Nat Prod Res. 2019;33:911-4. https://doi.org/10.1080/14786419.2017.1413571
  34. Condello M, Pellegrini E, Caraglia M, Meschini S. Targeting autophagy to overcome human diseases. Int J Mol Sci. 2019;20:725. https://doi.org/10.3390/ijms20030725
  35. Urbanska K, Orzechowski A. The secrets of alternative autophagy. Cells. 2021;10:3241. https://doi.org/10.3390/cells10113241
  36. Fan X, Huang T, Tong Y, Fan Z, Yang Z, Yang D, Mao X, Yang M. p62 works as a hub modulation in the ageing process. Ageing Res Rev. 2022;73:101538. https://doi.org/10.1016/j.arr.2021.101538
  37. Islam MA, Sooro MA, Zhang P. Autophagic regulation of p62 is critical for cancer therapy. Int J Mol Sci. 2018;19:1405. https://doi.org/10.3390/ijms19051405
  38. Yang W, Su J, Li M, Li T, Wang X, Zhao M, Hu X. Myricetin induces autophagy and cell cycle arrest of HCC by inhibiting MARCH1-regulated Stat3 and p38 MAPK signaling pathways. Front Pharmacol. 2021;12:709526. https://doi.org/10.3389/fphar.2021.709526
  39. Xie L, Li M, Liu D, Wang X, Wang P, Dai H, Yang W, Liu W, Hu X, Zhao M. Secalonic acid-F, a novel mycotoxin, represses the progression of hepatocellular carcinoma via MARCH1 regulation of the PI3K/AKT/β-catenin signaling pathway. Molecules. 2019;24:393. https://doi.org/10.3390/molecules24030393
  40. Zheng Y, Zhang W, Xu L, Zhou H, Yuan M, Xu H. Recent progress in understanding the action of natural compounds at novel therapeutic drug targets for the treatment of liver cancer. Front Oncol. 2022;11:795548. https://doi.org/10.3389/fonc.2021.795548