DOI QR코드

DOI QR Code

BEST PROXIMITY POINT OF CYCLIC GENERALIZED 𝜑-WEAK CONTRACTION MAPPING IN METRIC SPACES

  • Kim, Kyung Soo (Department of Mathematics Education, Kyungnam University)
  • Received : 2021.09.06
  • Accepted : 2021.12.04
  • Published : 2022.06.08

Abstract

The purpose of this paper is to introduce a new generalization class of cyclic mappings, called cyclic generalized 𝜑-weak contraction and obtain a corresponding best proximity point theorem for this cyclic mapping under certain conditions.

Keywords

Acknowledgement

The author would like to thank the referees for their valuable comments and suggestions which improved the presentation of this paper. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2019R1I1A3A01060344).

References

  1. R.P. Agarwal, M.A. Alghamdi and N. Shahzad, Fixed point theory for cyclic generalized contractions in partial metric spaces, Fixed Point Theory Appl., 40 (2012).
  2. M.A. Al-Thafai and N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal., 70 (2009), 3665-3671. https://doi.org/10.1016/j.na.2008.07.022
  3. A.H. Ansari, J. Nantadilok and M.S. Khan, Best proximity points of generalized cycle weak (F, 𝜓, 𝜑) contractions in ordered metric spaces, Nonlinear Funct. Anal. Appl., 25(1) (2020), 55-67.
  4. K.C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Newyork, 1985.
  5. Lj.B. Ciric, On contraction type mappings, Math. Balkanica, 1 (1971), 52-57.
  6. Lj.B. Ciric, On some maps with a nonunique fixed point, Publ. Inst. Math., 17 (1974), 52-58.
  7. Q.Q. Cheng and Y.F. Su, Further investigation on best proximity point of generalized cyclic weak 𝜑-contraction in ordered metric spaces, Nonlinear Funct. Anal. Appl., 22(1) (2017), 137-146. https://doi.org/10.22771/NFAA.2017.22.01.10
  8. M. Derafshpour, S. Rezapour and N. Shahzad, Best proximity point of cyclic 𝜑-contractions in ordered metric spaces, Topo. Methods Nonlinear Anal., 37 (2011), 193-202.
  9. A.A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
  10. E. Karapinar, Best proximity points of Kannan type cyclic weak 𝜑-contractions in ordered metric spaces, An. St. Univ. Ovidius Constanta, 20(3) (2012), 51-64.
  11. E. Karapinar and I.M. Erhan, Best proximity point on different type contractions, Appl. Math. Inform. Sci., 5(3) (2011), 558-569.
  12. S. Karpagam and S. Agrawal, Best proximity point theorems for cyclic orbital MeirKeeler contraction maps, Nonlinear Anal., 74 (2011), 1040-1046. https://doi.org/10.1016/j.na.2010.07.026
  13. M.S. Khan, M. Swaleh and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc., 30 (1984), 1-9. https://doi.org/10.1017/S0004972700001659
  14. M.S. Khan, M. Menaka, G.K. Jacob and M. Marudai, Proximity points for cyclic 2-convex contraction mappings, Nonlinear Funct. Anal. Appl., 25(1) (2020), 1-12.
  15. K.S. Kim, Convergence and stability of generalized 𝜑-weak contraction mapping in CAT(0) spaces, Open Mathematics, 15 (2017), 1063-1074. https://doi.org/10.1515/math-2017-0089
  16. K.S. Kim, Convergence of double acting iterative scheme for a family of generalized 𝜑-weak contraction mappings in CAT(0) spaces, J. Comput. Anal. Appl., 27(3) (2019), 404-416.
  17. K.S. Kim, Best proximity point of contraction type mapping in metric space, J. Comput. Anal. Appl., 27(6) (2019), 1023-1033.
  18. K.S. Kim, Convergence theorem for a generalized 𝜑-weakly contractive nonself mapping in metrically convex metric spaces, Nonlinear Funct. Anal. Appl., 26(3) (2021), 601-610. https://doi.org/10.22771/NFAA.2021.26.03.10
  19. W.A. Kirk, P.S. Srinivasan and P. Veeramani, Fixed points for mapping satisfying cyclical contractive conditions, Fixed Point Theory, 4 (2003), 79-89.
  20. Efe A. Ok, Real Analysis with Economic Applications, Princeton University Press, 2007.
  21. M. Pacurar and I.A. Rus, Fixed point theory for cyclic 𝜑-contractions, Nonlinear Anal., 72 (2010), 1181-1187. https://doi.org/10.1016/j.na.2009.08.002
  22. S. Rezapour, M. Derafshpour and N. Shahzad, Best proximity points of cyclic 𝜑-contractions on reflexive Banach spaces, Fixed Point Theory Appl., (2010), Article ID 946178, 7 pages, doi:10.1155/2010/946178.