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1. Introduction

In 1994, the concept of D∗-metric space is defined by Dhage [12] which is a
generalized metric space.

Definition 1.1. ([12]) Let X6= ∅ be a set. A functionD∗ : X×X×X→ [0,∞) is
called a D∗-metric, if the following properties are satisfied for each x, y, z ∈ X.
(D∗1) : D∗(x, y, z) ≥ 0.
(D∗2) : D∗(x, y, z) = 0 iff x = y = z.
(D∗3) : D∗(x, y, z) = D∗(p(x, y, z)); for any permutation p(x, y, z) of x, y, z.
(D∗4) : D∗(x, y, z) ≤ D∗(x, y, `2) +D∗(`2, z, z).

A pair (X, D∗) is called a D∗-metric space.

In the following, the notion of the b−metric space is defined by Bakhtin [6]
and Czerwik [11], there are many fixed point theorems in a b-metric space for
more information. I refer to the reader to look at [1− 11], [15− 39].

Definition 1.2. ([6, 11]) Let X 6= ∅ be a set and S ≥ 1 be a real number.
A function d : X × X → [0,∞) is called a b-metric [6, 12], if it satisfies the
following properties for each x, y, z ∈ X.

(b1) : d(x, y) = 0 iff x = y;
(b2) : d(x, y) = d(y, x);
(b3) : d(x, z) ≤ S [d(x, y) + d(y, z)] .

Now, we define the notion of the M∗-metric space which is a generalization
of a b-metric space and an M∗-metric space the tetrahedral inequality axiom
is weaker than for a D∗-metric space.

Definition 1.3. Let X be a non empty set and R ≥ 1 be a real number. A
function M∗ : X×X×X→ [0,∞) is called a M∗-metric, if the followings are
satisfied the properties: for each x, y, z ∈ X.
(M∗1) : M∗(x, y, z) ≥ 0.
(M∗2) : M∗(x, y, z) = 0 iff x = y = z.
(M∗3) : M∗(x, y, z) = M∗(p(x, y, z)); for any permutation p(x, y, z) of x, y, z.
(M∗4) : M∗(x, y, z) ≤ RM∗(x, y, u) +M∗(u, z, z).

A pair (X,M∗) is called an M∗-metric space.

Now, we introduce two examples that satisfy the four axioms for M∗-metric.

Example 1.4. For x, y, z ∈R, define

(1) M∗1 (x, y, z) = 1
R [|x− y|+ |y − z|+ |z − x|] .

(2) M∗∞(x, y, z) = 1
R max {|x− y| , |y − z| , |z − x|} .

Then we can say that (R,M∗1 ) and (R,M∗∞) are M∗-metric spaces.
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Example 1.5. Define a function M∗ on X× X× X by

M∗(x, y, z) =

{
0, if x = y = z,
1, otherwise.

Then M∗ is the discreet M∗-metric on X.

Note: In the following, we will present very important characteristics that
are always realized in the M∗-metric space, the importance of which lies in the
theories presented in this paper. It is worth noting that these characteristics
need not be satisfied in MR-metric space defined by Malkawi et. al. [23].

(M∗5) : M∗(x, x, y) = M∗(x, y, y).
(M∗6) : M∗(x, y, y) ≤ RM∗(y, y, z) +M∗(z, x, x).

Since

M∗(x, x, y) ≤ RM∗(x, x, x) +M∗(x, y, y)

= M∗(x, y, y)

and

M∗(x, y, y) ≤ RM∗(y, y, y) +M∗(y, x, x)

= M∗(x, x, y).

Thus, we have
M∗(x, x, y) = M∗(x, y, y).

Next, also we have from (M∗5)

M∗(x, y, y) = M∗(y, y, x)

≤ RM∗(y, y, z) +M∗(z, x, x)

= RM∗(y, y, z) +M∗(x, z, z).

Remark 1.6. The M∗-metrics in examples 1.4, 1.5 are satisfied the following
properties: For all x, y, z, `1, `2 in X, we have

(M∗7) : M∗(x, y, y) ≤ RM∗(x, y, z).
(M∗8) : M∗(x, y, z) ≤ 1

R [M∗(x, `1, `1) +M∗(z.`1, `2)] .

We well use the following example to show that (M∗6) does not implies
(M∗7).

Example 1.7. Suppose X has at least three elements. Define M∗ on X×X×X
by

M∗(x, y, z) =


0, if x = y = z,
1
2R , if x, y, z are distinct,
1, otherwise.

Then (X,M∗) is an M∗-metric space but (M∗7) is not satisfied.
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By adding some conditions and properties, we will presented some of the
interconnections between M∗-metric space and b-metric space.

Proposition 1.8. If the M∗-metric space (X,M∗) satisfies (M∗5) and (M∗6),
then d(x, y) = M∗(x, y, y) is a b-metric on X.

Proof. Let x, y ∈ X, we want to show (X, d) is a b-metric space.

(i) By (M∗1), d(x, y) = M∗(x, y, y) ≥ 0.
(ii) By (M∗2), d(x, y) = M∗(x, y, y) = 0 iff x = y.

(iii) By (M∗5), (M∗3),

d(x, y) = M∗(x, y, y) = M∗(x, x, y) = M∗(y, x, x) = d(y, x).

(iv) By (M∗6),

d(x, y) = M∗(x, y, y) ≤ RM∗(x, z, z) +M∗(z, y, y)

= Rd(x, z) + d(z, y)

≤ R [d(x, z) + d(z, y)] .

Thus, (X, d) is a b-metric space. �

Example 1.9. Let X := lp(R) with 0 < p < 1, where lp(R) := {{xn} ⊂ R :
∞∑
n=1
|xn|p <∞}. Define M∗ : X× X× X→ R+ by

M∗(x, y, z) =



0, iff x = y = z,
1, iff x, y, z are distinct,( ∞∑

n=1
|xn − yn|p

) 1
p

, iff x 6= y = z or x = z 6= y,( ∞∑
n=1
|yn − xn|p

) 1
p

, iff y 6= z = x or x = y 6= z,( ∞∑
n=1
|zn − xn|p

) 1
p

, iff x 6= z = y or y = x 6= z,

where x = {xn}, y = {yn} and z = {zn}. Then (X,M∗) is a M∗-metric space
with coefficient R > 1.

To show M∗ is an M∗-metric, we have to show that only (M∗4) is hold,
since (M∗1), (M∗2) and (M∗3) are obvious.

Case 1: If x, y, z are distinct, then we have two cases:
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(1) If u /∈ {x, y, z}, then

1 = M∗(x, y, z)

≤ RM∗(x, y, u) +M∗(u, z, z)

= R · 1 +

( ∞∑
n=1

|zn − un|p
) 1

p

.

(2) If u = x, then

1 = M∗(x, y, z)

≤ RM∗(x, y, u) +M∗(u, z, z)

= R · 1 +

( ∞∑
n=1

|un − zn|p
) 1

p

.

It is similar if u = y or u = z.

Case 2 : If x = y 6= z, then we have three cases:

(1) If u /∈ {y, z}, then

M∗(x, y, z) =

( ∞∑
n=1

|yn − zn|p
) 1

p

≤ RM∗(x, y, u) +M∗(u, z, z)

= R

( ∞∑
n=1

|yn − un|p
) 1

p

+

( ∞∑
n=1

|un − zn|p
) 1

p

.

(2) If u = x = y 6= z, then

M∗(x, y, z) =

( ∞∑
n=1

|yn − zn|p
) 1

p

≤ RM∗(x, y, u) +M∗(u, z, z)

= 0 +

( ∞∑
n=1

|un − zn|p
) 1

p

=

( ∞∑
n=1

|yn − zn|p
) 1

p

.
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(3) If x = y 6= z = u, then

M∗(x, y, z) =

( ∞∑
n=1

|yn − zn|p
) 1

p

≤ RM∗(x, y, u) +M∗(u, z, z)

= R

( ∞∑
n=1

|yn − un|p
) 1

p

+ 0

= R

( ∞∑
n=1

|yn − zn|p
) 1

p

and it is similar if x 6= y = z.

Moreover, (X,M∗) is not D∗-metric space.

Let x = (1, 1, ..., 1, 0, 0, ...), y = (−1,−1, ...,−1, 0, 0, ...)
and u = (1,−1, ...,−1, 0, 0, ...), where the number of nonzero element of x, y, u
is 2n. So,

M∗(x, x, y) =

( ∞∑
i=1

|xi − yi|p
) 1

p

=

(
2n∑
i=1

2p

) 1
p

= 2 · (2n)
1
p ,

M∗(x, x, u) =

( ∞∑
i=1

|xi − ui|p
) 1

p

=

(
n∑
i=1

2p

) 1
p

= 2 · (n)
1
p ,

M∗(u, y, y) =

( ∞∑
i=1

|xi − ui|p
) 1

p

=

(
n∑
i=1

2p

) 1
p

= 2 · (n)
1
p .

But,

32 = M∗(x, x, y) �M∗(x, x, u) +M∗(u, y, y) = 8 + 8 = 16,

when n = 2 and p = 1
2 .

Theorem 1.10. If (X,M∗) is an M∗-metric space, then any function d :
X× X→ R+ defined by

(i) for 1 ≤ q < ∞, d(x, y) = {M∗q(x, y, y) +M∗q(x, x, y)}
1
q is a b-metric

on X.
(ii) d(x, y) = max {M∗(x, y, y),M∗(x, x, y)} for all x, y ∈ X, is a b-metric

on X.

Proof. It suffices to prove (i), since (ii) are the same.
Obviously, d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only it x = y.
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Now, let x, y, z ∈ X. Then, for 1 ≤ q <∞,

d(x, y) = {M∗q(x, y, y) +M∗q(x, x, y)}
1
q

= {M∗q(y, y, x) +M∗q(y, x, x)}
1
q

= {M∗q(y, x, x) +M∗q(y, y, x)}
1
q

= d(y, x).

d(x, y) = {M∗q(x, y, y) +M∗q(x, x, y)}
1
q

≤ {(RM∗(y, y, z) +M∗(z, x, x))q

+ (RM∗(y, y, z) +M∗(z, x, x))q}
1
q

≤ R{(M∗(y, y, z) +M∗(z, x, x))q

+ (M∗(y, y, z) +M∗(z, x, x))q}
1
q

≤ R[{M∗q(y, y, z) +M∗q(x, x, z)}
1
q

+ {M∗q(z, y, y) +M∗q(z, z, y)}
1
q ].

≤ R [d(x, z) + d(z, y)] .

Hence d is a b-M∗-metric on X. �

Theorem 1.11. Let M∗ : X×X×X→ [0,∞) be a function satisfying (M∗1),
(M∗2), (M∗3), (M∗7) and (M∗8). Then M∗ is an M∗-metric on X.

Proof. In order to show that M∗ is an M∗-metric on X it is enough to show
that (M∗4) is satisfied. Let x, y, z ∈ X,

M∗(x, y, z) ≤ 1

R
M∗(x, `1, `1) +M∗(z, `1, `2)

≤ R

R
M∗(x, `1, y) +M∗(`1, `1, z)

≤ RM∗(x, y, `1) +M∗(`1, z, z).

Thus (M∗4) holds and hence M∗ is an M∗-metric on X. �

2. Ways of Generating M∗-metrics

In this section, we present some ways of generating M∗-metric spaces. Let
ℵ =

{
([1, [2, [3) ∈ (R+)3 : [1 ≤ 1

R([2 + [3), [2 ≤ 1
R([1 + [3), [3 ≤ 1

R([1 + [2)
}
.

Theorem 2.1. Suppose that the function Ψ : ℵ → R+ satisfies

(i) Ψ(=1,=2,=3) = Ψ(p(=1,=2,=3)), for any permutation p(=1,=2,=3)
of =1,=2,=3.
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(ii) Ψ(=1,=2,=3) = 0 iff =1 = =2 = =3 = 0,
(iii) Ψ(t, t, 0) ≤ Ψ(=,=1,=2) for every (=,=1,=2) ∈ ℵ,
(iv) Ψ(=1,=2,=3) ≤ 1

R [Ψ(=′1,=,=′′1) + Ψ(=′2,=,=′′2)]

for all (=1,=2,=3), (=′1,=,=′′1), (=′2,=,=′′2) and (=′3,=,=′′3) in ℵ, where
(=1,=′1,=′2), (=1,=′′1,=′′2), (=2,=′2,=′3), (=2,=′′2,=′′3), (=3,=′3,=′1), (=3,=′′3,=′′1)
∈ ℵ. Let (X, d) be a b−metric space. Define a function M∗ : X×X×X→ [0,∞)
by

M∗(x, y, z) = RΨ (d(x, y), d(y, z), d(z, x)) .

Then M∗ is an M∗-metric on X.

Proof. Since M∗ satisfies (M∗1), (M∗2) and (M∗3), it is enough to show that
(M∗7) and (M∗8) are satisfied.

Let x, y, z, `1, `2 ∈ X. Then it follows from (iii) and (iv) that

M∗(x, y, y) = RΨ(d(x, y), 0, d(y, x))

≤ RΨ(d(x, y), d(y, z), d(z, x))

= RM∗(x, y, z)

and

M∗(x, y, z) = RΨ(d(x, y), d(y, z), d(z, x))

≤ Ψ (d(x, `1), d(`2, x))

+ Ψ (d(zz, `1), d(`1, `2), d(`2, z))

≤ RM∗(x, `1, `1) +M∗(`1, z, `2).

Thus, the hypothesis of Theorem 1.11 are satisfied for M∗ and hence M∗ is
an M∗-metric on X. �

Theorem 2.2. Suppose that Φ : R+ → R+ satisfies the following properties:

(i) Φ([) = 0 iff [ = 0,
(ii) Φ is monotone increasing,

(iii) Φ(s+ t) ≤ 1
R [Φ(s) + Φ(t)] for all s, t ∈ R+.

Then Ψ([1, [2, [3) = Φ([1) + Φ([2) has all the properties that identified in
Theorem 2.1.

Proof. It is clear that Ψ satisfy (i) of Theorem 2.1. Note that

Ψ([1, [2, [3) = 0⇐⇒ Φ([1) + Φ([2) + Φ([3) = 0⇐⇒ [1 = [2 = [3 = 0.

Let ([1, [2, [3) ∈ ℵ. Consider the following triples in ℵ:
([1, [2, [3), ([′1, [, [

′′
1), ([′2, [, [

′′
2), ([′3, [, [

′′
3), ([1, [

′
1, [
′
2), ([1, [

′′
1, [
′′
2), ([2, [

′
2, [
′
3),
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([2, [
′′
2, [
′′
3), ([3, [

′
3, [
′
1) ∈ ℵ. Then ([3, [

′′
3, [
′′
1) ∈ ℵ, where ℵ ⊂ (R+)3. So,

Ψ(=1,=2,=3) = Φ(=1) + Φ(=2)

≤ Φ(=′1 + =+ =′′2) + Φ(=′2 + =+ =′′3)

≤ 1

R
Φ(=′1) +

1

R2
Φ(=) +

1

R2
Φ(=′′2)

+
1

R
Φ(=′2) +

1

R2
Φ(=) +

1

R2
Φ(=′′3)

≤ 1

R
[Ψ(=′1,=,=′′1) + Ψ(=′2,=,=′′2)].

It is clear that Ψ([, [, 0) ≤ Ψ([, [1, [2) for all ([1, [, [2) ∈ ℵ. Hence Ψ satisfies
all conditions specified in Theorem 2.1. �

Now, in order to show that the two conditions (ii) and (iii) are independent
in previous theorem, we give the following example.

Example 2.3. Define a function Φ : R+ → R+ by Φ([) = 2[ for all [ ∈ R+

satisfies the hypothesis of Theorem 2.2.
Also, the conditions (ii) and (iii) are independent. For example the function

2[2, (ii) holds but (iii) does not hold. While Φ([) = 0 if [ = 0 and Φ([) = [+ 1
[

if [ > 0 satisfies (iii) but not (ii).

Theorem 2.4. Let (X, d) be a metric space. Define real functions M∗1 ,M
∗
∞,M

∗
3 ,

M∗4 on X× X× X by

M∗1 (x, y, z) = d(x, y) + d(y, z) + d(z, x),

M∗∞(x, y, z) = max {d(x, y), d(y, z), d(z, x)} ,

M∗3 (x, y, z) =

{
M∗1 (x, y, z), if x, y, z are distinct,
M∗∞(x, y, z), otherwise,

and

M∗4 (x, y, z) =

{
M∗∞(x, y, z), if x, y, z are distinct,
M∗1 (x, y, z), otherwise.

Then M∗1 ,M
∗
∞,M

∗
3 ,M

∗
4 are M∗-metric on X.

Proof. It is clear that M∗1 and M∗∞ are M∗-metrics and all the proofs of M∗3
and M∗4 are similar, it is enough to show that M∗4 is an M∗-metric. Also, it is
enough to show that tetrahedral inequality is satisfied.

Let x, y, z, `1 ∈ X.
Case 1: x, y, z are distinct. While preserving the generality, we assume

that
d(x, y) ≤ d(y, z) ≤ d(z, x).
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(1) If `1 /∈ {x, y, z} , then

M∗4 (x, y, z) = d(x, z)

≤ R [d(x, `1) + d(`1, z)]

≤ R [M∗4 (x, y, `1) +M∗4 (`1, z, z)] .

(2) If `1 = x, then

M∗4 (x, y, z) = M∗4 (`1, y, z) = d(`1, z)

≤ RM∗4 (x, y, `1) +M∗4 (`1, z, z).

If `1 = y or `1 = z, then the proof is similar.

Case 2: Assume x = y 6= z.

(1) If `1 /∈ {y, z} , then

M∗4 (x, y, z) = d(y, z) + d(z, y)

≤ R [d(y, `1) + d(`1, z) + d(z, `1) + d(`1, y)]

≤ RM∗4 (x, y, `1) +M∗4 (`1, z, z).

(2) If `1 = y, then

M∗4 (x, y, z) = M∗4 (x, `1, z)

≤ RM∗4 (x, y, `1) +M∗4 (`1, z, z).

(3) If `1 = z 6= y, then

M∗4 (x, y, z) = M∗4 (x, y, `1)

≤ RM∗4 (x, y, `1) +M∗4 (`1, z, z).

Hence M∗4 is an M∗-metric on X. �

3. Types of convergence associated with an M∗-metric

In light of the definition of a D-convergent and a D-Cauchy for a D-metric
[13], we define M∗-convergent and M∗-Cauchy for M∗-metric.

Definition 3.1. A sequence {xn} in an M∗-metric space (X,M∗) is called
M∗-convergent if there exists x in X such that for ε > 0, there exists a N > 0
integer number such that M∗(xn, xm, x) < ε for all m ≥ N , n ≥ N. Then we
called that {xn} is M∗-convergent to x and x is a limit of {xn} .

Definition 3.2. A sequence {xn} in an M∗-metric space (X,M∗) is called
M∗-Cauchy if for a given ε > 0, there exists a positive integer N such that
M∗(xn, xm, xp) < ε for all m,n, p ≥ N .
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In the following, we introduce the concept of an M∗-strongly convergent
and a very M∗-strongly convergent. Take into can a sequence {xn} in an
M∗-metric in the following two definitions.

Definition 3.3. Let (X,M∗) be an M∗-metric space and {xn} be a sequence
in X, we say that {xn} is M∗-strongly convergent to an element x in X if

(i) M∗(xn, xm, x)→ 0 as m,n→∞,
(ii) {M∗(y, y, xn)} converges to M∗(y, y, x) for all y ∈ X.

Definition 3.4. Let (X,M∗) be an M∗-metric space and {xn} be a sequence
in X, we call that {xn} is very M∗-strongly convergent to an element x in X if

(i) M∗(xn, xm, x)→ 0 as m,n→∞,
(ii) {M∗(y, z, xn)} converges to M∗(y, z, x) for all y, z ∈ X.

By using some properties of Remark 1.1, we present some results on M∗-
convergence, M∗-Cauchy, M∗-strongly convergent and very M∗-strongly con-
vergent.

Theorem 3.5. Let (X,M∗) be an M∗-metric space. Then {xn} converges
to x in (X,M∗) strongly if and only if {xn} converges to x in (X,M∗) and
lim
n→∞

M∗(x, x, xn) = 0.

Proof. Let {xn} be an M∗-convergent sequence in X with limit x, that is,
lim
n→∞

M∗(x, x, xn) = 0 and ε > 0. Then there is a positive integer N such that

M∗(x, x, xn) < ε for all n ≥ N. Let y ∈ X. Then for n ≥ N ,

M∗(y, y, xn) ≤ RM∗(y, y, x) +M∗(xn, x, x)

≤ R [M∗(y, y, x) +M(xn, x, x)] .

This produces that

|M∗(y, y, xn)−RM∗(y, y, x)| ≤ RM∗(x, x, xn) < Rε = ε1 for all n ≥ N.
Consequently, we get

|M∗(y, y, xn)−M∗(y, y, x)| ≤ RM∗(x, x, xn) < Rε = ε1.

Hence {M∗(y, y, xn)} converges to M∗(y, y, x) for all y ∈ X. This means that
{xn} converges strongly to x in X. �

We can easily prove the theorem from the definition of the M∗-metric.

Theorem 3.6. Let (X,M∗) be an M∗-metric space and let {xn} be a sequence
in X and x ∈ X. Assume the following implications:

(1) M∗(x, x, xn)→ 0 as n→∞,
(2) M∗(x, xn, xn)→ 0 as n→∞,
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(3) M∗(x, xn, xm)→ 0 as n,m→∞,
(4) M∗(y, y, xn)→M∗(y, y, x) as n→∞ for all y ∈ X,
(5) M∗(y, xn, xm)→M∗(y, x, x) as n,m→∞ for all y ∈ X,
(6) M∗(y, x, xn)→M∗(y, x, x) as n→∞ for all y ∈ X,
(7) M∗(y, z, xn)→M∗(y, z, x) as n→∞ for all z, y ∈ X.

Then (7) =⇒ (6) =⇒ (1), (7) =⇒ (4) =⇒ (1) and (5) =⇒ (3) =⇒ (2).

Proof. We can easily prove the theorem from the definition of theM∗-convergent
and M∗-metric. �

Inside the following example, we provide some non implications of Theorem
3.6.

Example 3.7. Either (3) or (4) does not imply (5), (6) or (7).
Let X = R with an M∗-metric. Then the function M∗3 is defined in Theorem

2.4 on X× X× X reduces to the following.

M∗3 =

 0, if x = y = z,
|x− y|+ |y − z|+ |z − x| , if x, y, z are distinct,

max {|x− y| , |y − z| , |z − x|} , otherwise.

Then (X,M∗3 ) is an M∗-metric space in which (3) and (4) are satisfied but
(5), (6) and (7) are not satisfied.

Let xn = 2
1
n for n = 1, 2, 3, ... . Then {xn} converges to 1 as n → ∞ with

respect to the M∗-metric. For m > n, we have

M∗3 (1, 2
1
n , 2

1
m ) =

∣∣∣1− 2
1
n

∣∣∣+
∣∣∣2 1

m − 2
1
n

∣∣∣+
∣∣∣2 1

m − 1
∣∣∣→ 0, as n,m→∞.

Therefore,
{

2
1
n

}
convergent to 1 with respect to M∗3 . Since for y ∈ X,

M∗3

(
y, y, 2

1
n

)
= max

{∣∣∣y − 2
1
n

∣∣∣ , 0, ∣∣∣y − 2
1
n

∣∣∣} =
∣∣∣y − 2

1
n

∣∣∣ ,
we have lim

n→∞
M∗3

(
y, y, 2

1
n

)
= M∗(y, y, 1) for all y ∈ X. Thus (3) and (4) hold.

Let y = 3 and x = 1. Trivially, lim
n→∞

M∗3

(
3, 1, 2

1
n

)
6= M∗3 (3, 1, 1), thus (6)

and (7) do not hold. Additionally lim
n,m→∞

M∗3

(
3, 2

1
n , 2

1
m

)
6= M∗3 (3, 1, 1) , thus

(5) does not hold.

Theorem 3.8. Let (X,M∗) be an M∗-metric space satisfying (M∗7 ) and (M∗8 ).
Then the function d on X× X → [0,∞) is defined by d(x, y) = M∗(x, y, y) is
b-metric on X and the following are equivalent:

(i) lim
n→∞

xn = x in (X, d).

(ii) lim
n→∞

xn = x in (X,M∗).
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(iii) lim
n→∞

xn = x strongly in (X,M∗).

Proof. By Proposition 1.8, it is clear that (X, d) is a b-metric space.
Assume (i) holds, then lim

n→∞
xn = x in (X, d).

Let ε > 0. Then there exists an integer number N > 0 such that d(x, xn) <
ε
2 for all n ≥ N. For n,m ≥ N ,

M∗(x, xn, xm) ≤ 1

R
[M∗(x, x, xm) +M∗(x, x, xn)]

=
1

R
[d(x, xm) + d(x, xn)] < ε.

Thus (i)=⇒(ii).

Assume (ii) holds, then lim
n→∞

xn = x in (X,M∗).
Let ε > 0. Then there exists a positive integer N such that M∗(xn, xm, x) <

ε for all m,n ≥ N. For y ∈ X and n ≥ N , by (M∗7),

M∗(y, y, xn) ≤ RM∗(x, y, xn)

≤ R

R
[M∗(x, x, xn) +M∗(y, x, x)]

≤M∗(x, xn, xn) +M∗(y, y, x).

Then, we get

|M∗(y, y, xn)−M∗(y, y, x)| ≤M∗(x, xn, xn) <
ε

2
for all n ≥ N.

Hence {M∗(y, y, xn)} converges to M∗(y, y, x) for all y ∈ X. Thus, (ii)=⇒(iii)
hold.

The implicates (iii)=⇒(ii) is trivial.
Now, we need to prove (ii)=⇒(i).
Assume (ii) holds, then lim

n→∞
xn = x in (X,M∗).

Let ε > 0. Then there exists a positive integer N such that M∗(xn, xn, x) < ε
for all m,n ≥ N. For n ≥ N, by (M∗7),

d(x, xn) = M∗(x, x, xn) ≤ RM∗(x, xm, xn) < Rε.

Hence lim
n→∞

xn = x in (X, d). Thus (ii)=⇒(i). �

4. Common fixed point theorems in M∗-metric space

Theorem 4.1. Let (X,M∗) be an complete M∗-complete metric space and
let S : X → X be a mapping which satisfies the following condition for all
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x, y, z ∈ X with R ≥ 1,

M∗(Sx, Sy, Sz) ≤ 1

R
max


aM∗(x, y, z),

b[M∗(x, Sx, Sy) + 2M∗(y, Sy, Sy)],
b[M∗(x, Sy, Sy) +M∗(y, Sx, Sy),

M∗(z, Ty, Tx)]

 , (4.1)

where 0 < a < 1 and 0 < b < 1
3 . Then S has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary, there exists x1 ∈ X such that Sx0 = x1 and
let {xn} in X be a sequence with Sxn−1 = xn. By using (4.1), we have

M∗(xn, xn, xn+1)

= M∗(Sxn−1, Sxn−1, Sxn)

≤ 1

R
max


aM∗(xn−1, xn−1, xn), b[M∗(xn−1, Sxn−1, Sxn−1)

+2M∗(xn−1, Sxn−1, Sxn−1)],
b[M∗(xn−1, Sxn−1, Sxn−1) +M∗(xn−1, Sxn−1, Sxn−1)

+M∗(xn, Sxn−1, Sxn−1)]


=

1

R
max


aM∗(xn−1, xn, xn), b[M∗(xn−1, xn, xn)

+2M∗(xn−1, xn, xn)],
b[M∗(xn−1, xn, xn) +M∗(xn−1, xn, xn)

+M∗(xn, xn, xn)]


=

1

R
max

{
aM∗(xn−1, xn−1, xn), 3bM∗(xn−1, xn, xn),

2bM∗(xn−1, xn, xn)

}
≤ αM∗(xn−1, xn−1, xn), (4.2)

where α = max {a, 3b} and 0 < α < 1.
By repeating the application of the above inequality and equality (4.2), we

have

M∗(xn, xn, xm) ≤ RM∗(xn, xn, xn+1) +RM∗(xn+1, xn+1, xn+2)

...

+RM∗(xm−2, xm−2, xm−1) +M∗(xm−1, xm−1, xm)

≤ R[M∗(xn, xn, xn+1) +M∗(xn+1, xn+1, xn+2)

...

+M∗(xm−2, xm−2, xm−1) +M∗(xm−1, xm−1, xm)]

≤ (αn + αn+1 + ...+ αm−1)RM∗(x0, x0, x1)

≤ αn

1− α
RM∗(x0, x0, x1).

Thus, M∗(xn, xn, xm)→ 0 as n,m→∞.
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Also, for n,m, l ∈ N,

M∗(xn, xm, xl) ≤ RM∗(xn, xm, xm) +M∗(xm, xl, xl)

≤ αn

1− α
R2M∗(x0, x0, x1) +

αn

1− α
RM∗(x0, x0, x1).

Taking n,m, l → ∞, we get M∗(xn, xm, xl) → 0, so {xn} is an M∗-Cauchy
sequence. Since X is an M∗-complete, there exists u such that xn → u as
n→∞.

If S(X) ⊆ X, we have u ∈ X. Then there exists p ∈ X such that p = u. We
claim that Sp = u. From

M∗(Sp, u, u)

= M∗(Sp, Sp, u)

≤ RM∗(Sp, Sp, Sxn) +M∗(Sxn, u, u)

≤ max

{
aM∗(u, u, xn), b[M∗(u, p, xn+1) + 2M∗(u, Sp, Sp)],

+b[M∗(u, Sp, Sp) +M∗(u, Sp, Sp) +M∗(xn, Sp, Sp)]

}
,

as n→∞, we get M∗(Sp, u, u) = 0 and Sp = u, that is, Sp = p. Thus, S has
a fixed point.

Next, we need to prove that S has a unique fixed point. Assume there exists
q in X such that q = Sq. Then, we have

M∗(Sp, Sp, Sq)

≤ 1

R
max

{
aM∗(p, p, q), b[M∗(p, Sp, Sq) + 2M∗(p, Sp, Sp)],
b[M∗(p, Sp, Sp) +M∗(p, Sp, Sp) +M∗(q, Sp, Sp)]

}
=

1

R
max

{
aM∗(Sp, Sp, Sq), b[M∗(Sp, Sp, Sq) + 2M∗(Sp, Sp, Sp)],
b[M∗(Sp, Sp, Sp) +M∗(Sp, Sp, Sp) +M∗(Sq, Sp, Sp)]

}
=

1

R
max {aM∗(Sp, Sp, Sq), bM∗(Sq, Sp, Sp)}

=
β

R
M∗(Sp, Sp, Sq), where β = max {a, b} .

Hence, we have

M∗(Sp, Sp, Sq) ≤ γM∗(Sp, Sp, Sq),

where γ = β
R , that is, (γ − 1)M∗(Sp, Sp, Sq) ≥ 0. Since γ ∈ (0, 1),

(γ − 1)M∗(Sp, Sp, Sq) ≤ 0.

This means that S has a unique fixed point. This completes the proof. �
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5. M∗-contraction and an application to system of
linear equations

In this section, we seek to present a solution to a system of linear equations.
Therefore, we will be to prove the following theorems.

Definition 5.1. Let M∗ be an M∗-metric on a set X and T : X → X be a
mapping. T is said to be an M∗-contraction if for all x, ` ∈ X there exists
δ ∈ [0, 1) such that

M∗(Tx, Tx, T `) ≤ δM∗(x, x, `).

Theorem 5.2. Let X be an M∗-complete metric space and T : X → X be an
M∗-contraction with δ ∈ [0, 1) and R ≥ 1. Assume that there exists x ∈ X
such that M∗(x, x, Tx) <∞. Then there is ` ∈ X such that xn → ` and ` is a
unique fixed point of T.

Proof. Let x0 ∈ X and a sequence {xn} in X defined by xn = Txn−1 = Tnx0.
Then, we get

M∗(T 2x0, T
2x0, T

2x) ≤ δM(Tx0, Tx0, Tx)

≤ δ2M∗(x0, x0, x).

If this process is repeated attain,

M∗(Tnx0, T
nx0, T

nx) ≤ δnM∗(x0, x0, x).

Now, we have to prove that {xn} is an M∗-Cauchy in X.

M∗(xn, xn, xm) ≤ RM∗(xn, xn, xn+1) +RM∗(xn+1, xn+1, xn+2)

...

+RM∗(xm−1, xm−1, xm)

≤ RδnM∗(x0, x0, x) +Rδk+1M∗(x0x0, x)

...

+Rδm−1M∗(x0, x0, x)

= M∗(x0, x0, x)Rδn
[
1 + δ + (δ)2 + ...+ (δ)m−n−1

]
, (5.1)

where n > m > 0. Letting n,m→∞ in (5.1), we have

lim
m,n→∞

M∗(xn, xn, xm) = 0.

Thus, {xn} is an M∗-Cauchy in X. Since X is an M∗-complete, so {xn} is
M∗-convergent to some `.
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From this inequality,

M∗(T`, T `, `) ≤ RM∗(`, `, xn) +M∗(xn, xn, `))

≤ RδM∗(`, `, xn−1) +M∗(xn, xn, `)

= RδM∗(xn−1, xn−1, `) +M∗(xn, xn, `)

= 0 as n→∞,
we know that ` is fixed point of T.

Now, we need to prove that ` is unique fixed point of T . Assume `1 is a
fixed point of T such that ` 6= `1. Since

M∗(`, `, `1) = M∗(T`, T `, T `1) ≤ δM∗(`, `, `1),
we get

(1− δ)M∗(`, `, `1) ≤ 0.

This implies thatM∗(`, `, `1) = 0, that is, ` = `1. This completes the proof. �

To achieve our purpose in this section, we must prove the following theorem
by Theorem 5.2.

Theorem 5.3. Let X = Rn be an M∗-metric space with the M∗-metric:

M∗(℘, q, `) =
n∑
i=1

(|℘i − qi|+ |qi − `i|+ |`i − ℘i|) .

If
n∑
i=1

|αij | ≤ α < 1 for all j = 1, 2, ..., n,

then the linear system
α11℘1 + α12℘2 + ...+ α1n℘n = γ1
α21℘1 + α22℘2 + ...+ α2n℘n = γ2

...
αn1℘1 + αn2℘2 + ...+ αnn℘n = γn

(5.2)

has a unique solution.

Proof. Since X = Rn is an M∗-complete, we have to show that T : X → X is
defined by

T (℘) = A℘+ γ,

where ℘ = (℘1, ℘2, ..., ℘n) ∈ Rn and

A =


α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αn1 αn2 · · · αnn

 6= 0,
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is an M∗-contraction. Since

M∗(T℘, Tq, T `) =
n∑
i=1

∣∣∣∣∣∣
n∑
j=1

αij ((℘j − qj) + (qj − `j) + (`j − ℘j))

∣∣∣∣∣∣
≤

n∑
i=1

n∑
j=1

|αij | |(℘j − qj) + (qj − `j) + (`j − ℘j)|

=
n∑
j=1

n∑
i=1

|αij | |(℘j − qj) + (qj − `j) + (`j − ℘j)|

≤ α
n∑
j=1

|(℘j − qj) + (qj − `j) + (`j − ℘j)|

= αM∗(℘, q, `),

T is an M∗-contraction and it is obvious that M∗(℘, ℘, `) <∞. By Theorem
5.2, the linear equation system (5.2) has a unique solution. �
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