DOI QR코드

DOI QR Code

Ecological Network on Benthic Diatom in Estuary Environment by Bayesian Belief Network Modelling

베이지안 모델을 이용한 하구수생태계 부착돌말류의 생태 네트워크

  • Kim, Keonhee (Zion E&S Co. Ltd., Research Institute) ;
  • Park, Chaehong (Human and Eco- Care Center, Sanghuh College of Life Sciences, Konkuk University) ;
  • Kim, Seung-hee (Department of Marine Sciences and Convergent Technology, Hanyang University) ;
  • Won, Doo-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Lee, Kyung-Lak (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Jeon, Jiyoung (Water Environmental Engineering Research Division, National Institute of Environmental Research)
  • 김건희 ((주)시온 E&S 부설연구소) ;
  • 박채홍 (건국대학교 휴먼앤에코케어센터) ;
  • 김승희 (한양대학교 과학기술융합대학 해양융합과학과) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소) ;
  • 이경락 (국립환경과학원 물환경공학연구과) ;
  • 전지영 (국립환경과학원 물환경공학연구과)
  • Received : 2022.03.16
  • Accepted : 2022.03.21
  • Published : 2022.03.31

Abstract

The Bayesian algorithm model is a model algorithm that calculates probabilities based on input data and is mainly used for complex disasters, water quality management, the ecological structure between living things or living-non-living factors. In this study, we analyzed the main factors affected Korean Estuary Trophic Diatom Index (KETDI) change based on the Bayesian network analysis using the diatom community and physicochemical factors in the domestic estuarine aquatic ecosystem. For Bayesian analysis, estuarine diatom habitat data and estuarine aquatic diatom health (2008~2019) data were used. Data were classified into habitat, physical, chemical, and biological factors. Each data was input to the Bayesian network model (GeNIE model) and performed estuary aquatic network analysis along with the nationwide and each coast. From 2008 to 2019, a total of 625 taxa of diatoms were identified, consisting of 2 orders, 5 suborders, 18 families, 141 genera, 595 species, 29 varieties, and 1 species. Nitzschia inconspicua had the highest cumulative cell density, followed by Nitzschia palea, Pseudostaurosira elliptica and Achnanthidium minutissimum. As a result of analyzing the ecological network of diatom health assessment in the estuary ecosystem using the Bayesian network model, the biological factor was the most sensitive factor influencing the health assessment score was. In contrast, the habitat and physicochemical factors had relatively low sensitivity. The most sensitive taxa of diatoms to the assessment of estuarine aquatic health were Nitzschia inconspicua, N. fonticola, Achnanthes convergens, and Pseudostaurosira elliptica. In addition, the ratio of industrial area and cattle shed near the habitat was sensitively linked to the health assessment. The major taxa sensitive to diatom health evaluation differed according to coast. Bayesian network analysis was useful to identify major variables including diatom taxa affecting aquatic health even in complex ecological structures such as estuary ecosystems. In addition, it is possible to identify the restoration target accurately when restoring the consequently damaged estuary aquatic ecosystem.

베이지안 알고리즘 모델은 입력된 자료를 기반으로 확률을 계산하는 모델 알고리즘으로써 주로 복합재난 및 수질관리를 위해 사용되었다. 최근에는 생물 간, 혹은 생물-비생물 요인들 사이의 생태학적 구조를 파악하고 이를 이용한 생태 네트워크 분석에 활용되고 있다. 본 연구는 국내 하구수생태계의 부착돌말류 군집 변화와 이화학적 요인들 사이의 베이지안 네트워크 분석을 수행하여 부착돌말류 건강성 변화의 주요 요인들을 파악하였다. 베이지안 분석을 위해 본 연구 자료를 위해 물환경측정망의 생물 측정망을 기준으로 전국 하구 지역에 분포하는 668개 지점을 2008년부터 2019년까지 연간 2회 조사를 수행하였다. 자료는 서식지 요인, 물리적 요인, 화학적 요인, 생물학적 요인으로 분류하였으며 이를 베이지안 네트워크 모델에 입력하여 전국 및 해역별 하구수생태계 네트워크 분석을 수행하였다. 2008년부터 2019년까지 전국 하구수역에서 부착돌말류는 총 625개 분류군이 출현하였으며 2목, 5아목, 18과, 141속, 595종, 29변종, 1품종으로 구성되었다. Nitzschia inconspicua의 누적 세포밀도가 가장 높았으며 Nitzschia palea가 뒤를 이었고, 이외에도 Pseudostaurosira elliptica와 Achnanthidium minutissimum 분류군의 누적 세포밀도가 높았다. 부착돌말류를 이용한 하구수생태계 건강성 평가 결과는 조사 지점이 증가함에 따라서 대체로 보통(C등급)~나쁨(D등급) 등급의 비율이 증가하였으나 조사 시기에 따른 등급별 변화는 매우 미약하였다. 베이지안 네트워크 모델을 이용하여 하구수생태계 부착돌말류 건강성 평가 결과와 서식지 정보 및 이화학적 수질 정보 사이의 관계를 분석한 결과, 건강성 평가 점수에 가장 민감하게 영향을 미치는 요인은 생물 요인이었으며 서식지 및 이화학적 요인은 상대적으로 민감도가 낮았다. 하구수생태계 건강성 평가 점수에 가장 민감하게 영향을 미치는 부착돌말류 분류군은 Nitzschia inconspicua, N. fonticola, Achnanthes convergens, Pseudostaurosira elliptica으로 나타났으며 생물 요인 이외에도 서식지 인근의 공단과 축사의 비율이 건강성 평가 점수에 많은 영향을 미쳤다. 해역에 따라서 부착돌말류 건강성 평가 점수에 민감한 주요 분류군 조성은 다르게 나타났으나 모든 해역에서 부착돌말류의 세포밀도와 AFDM 및 Chl-a는 부착돌말류 건강성 점수에 민감한 영향을 미치지 않았다. 베이지안 네트워크 분석은 하구수생태계와 같이 복잡한 생태구조에서도 건강성에 영향을 미치는 주요 분류군과 요인들을 파악하는데 유용하였으며 이를 통해 향후 훼손된 하구수생태계의 복원을 수행함에 있어서 복원 대상을 보다 정확하게 제시할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 환경부의 재원으로 국립환경과학원의 지원을 받아 수행하였습니다(NIER-2020-04-02-009).

References

  1. Allan, J.D., M.M. Castillo and K.A. Capps. 2020. Stream ecology: structure and function of running waters, Springer Nature.
  2. An, S., S. Lee and J. Choi. 2011. Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea. Journal of the Korean Society of Oceanography 16(2): 70-80.
  3. APHA. 2005. Standard methods for the examination of water and wastewater, Federation, Water Environmental Aph Association.
  4. BERTRAND, J. 1992. Mouvement des diatomees. II: synthese des mouvements. Cryptogamie. Algologie 13(1): 49-71.
  5. Besse-Lototskaya, A., P.F. Verdonschot, M. Coste and B. Van de Vijver. 2011. Evaluation of European diatom trophic indices. Ecological Indicators 11(2): 456-467. https://doi.org/10.1016/j.ecolind.2010.06.017
  6. Blinn, D.W. and P.C. Bailey. 2001. Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. Hydrobiologia 466(1): 231-244. https://doi.org/10.1023/A:1014541029984
  7. Castillo, E., J.M. Gutierrez and A.S. Hadi. 2012. Expert systems and probabilistic network models, Springer Science & Business Media.
  8. Champ, C.W. and D.K. Shepherd. 2007. Encyclopedia of statistics in quality and reliability.
  9. Choi, J.-Y. 2006. Research and Research on Development of Comprehensive Water Environment Assessment Method (III) Korean Environment Institute National Institute of Environmental.
  10. Coste, M. and H. Ayphassorho. 1991. Etude de la qualite des eaux du bassin Artois-Picardie a Iaide des communautes de diatomees benthiques: application des indices diatomiques, irstea.
  11. Ewe, S.M., E.E. Gaiser, D.L. Childers, D. Iwaniec, V.H. Rivera-Monroy and R.R. Twilley. 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569(1): 459-474. https://doi.org/10.1007/s10750-006-0149-5
  12. Frey, J.W., A.H. Bell, J.A. Hambrook Berkman and D.L. Lorenz. 2011. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes, United States Geological Survery.
  13. Gaiser, E. 2009. Periphyton as an indicator of restoration in the Florida Everglades. Ecological Indicators 9(6): S37-S45. https://doi.org/10.1016/j.ecolind.2008.08.004
  14. Gleick, P. 2001. Safeguarding our water-making every drop count, beitberl.ac.il, Scientific American.
  15. Hwang, J.-S., Y.-K. Park and C.-H. Won. 2012. Runoff Characteristics of Non-Point Source Pollution in Lower Reaches of Livestock Area. Journal of Korean Society of Environmental Engineers 34(8): 557-565. https://doi.org/10.4491/KSEE.2012.34.8.557
  16. Hwang, S.-J., N.-Y. Kim, D.H. Won, K.K. An, J.K. Lee and C.S. Kim. 2006. Biological assessment of water quality by using epilithic diatoms in major river systems (Geum, Youngsan, Seomjin River), Korea. Journal of Korean Society on Water Environment 22(5): 784-795.
  17. Kelly, M. and B.A. Whitton. 1995. The trophic diatom index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7(4): 433-444. https://doi.org/10.1007/BF00003802
  18. Kim, B.-H., D.-H. Won and Y.-J. Kim. 2012. Spring Bloom of Skeletonema costatum and Lake Trophic Status in the Hwajinpo Lagoon, South Korea. Korean Journal of Limonology 45(3): 329-339.
  19. Kim, B. and S. Jung. 2007. Turbidity Problems in Streams and Reservoirs in Korea and Control Strategie. Nature Conservation 139: 1-7.
  20. Kim, H.-K. 2022. Biological Water Quality Assessment Using the Epilithic Diatoms in Korean Estuary, Hanyang University.
  21. Kim, M. 2019. Analysis of the health status of the aquatic ecosystem in Chungbuk and environmental factors in the damaged section, Chungbuk Research Institute, Chungbuk Research Institute.
  22. Kobayasi, H., M. Idei, S. Mayama, T. Nagumo and K. Osada. 2006. H. Kobayasi's Atlas of Japanese Diatoms Based on Electron Microscopy. Uchidarokakuho, Tokyo, Japan, Japanese.
  23. Krammer, K. 1985. Naviculaceae. Bibliotheca Diatomologica 9: 1-230.
  24. Krammer, K. and H. Lange-Bertalot. 1986. Naviculaceae: neue und wenig bekannte Taxa neue Kombinationen und Synonyme sowie Bemerkungen zu einigen Gattugen. Bibliotheca Diatomologica, Koeltz Scientific Books Berlin.
  25. Lane, C.M. 2005. The use of diatoms as biological indicators of water quality, and for environmental reconstruction, in south-east Tasmania, Australia, University of Tasmania.
  26. Lange-Bertalot, H. 2001. Navicula sensu stricto 10 genera separated from Navicula sensu lato Frustulia, Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats 2: 526.
  27. Lee, K.-H., B.-H. Rho, H.-J. Cho and C.-H. Lee. 2011. Estuary Classification Based on the Characteristics of Geomorphological Features, Natural Habitat Distributions and Land Uses. Journal of the Korean Society of Oceanography 16(2): 53-69.
  28. Lee, S.-W., G. Joo, G. Ahn and H.-Y. Lee. 2009. Aquatic Ecosystem Health Survey and Assessment, National Institute of Environmental Research, Ministry of Environment.
  29. Liew, J., T. Jardine, R. Lim, J. Kwik, H. Tan, Z. Kho and D. Yeo. 2018. Bottom-up influences on tropical freshwater food web structure support the "environmental filtering" hypothesis. Limnology and Oceanography 63(5): 1877-1890. https://doi.org/10.1002/lno.10813
  30. Lim, R., J. Liew, J. Kwik and D. Yeo. 2018. Predicting food web responses to biomanipulation using Bayesian Belief Network: Assessment of accuracy and applicability using in-situ exclosure experiments. Ecological Modelling 384: 308-315. https://doi.org/10.1016/j.ecolmodel.2018.06.017
  31. Manoylov, K.M. 2009. Intra-and interspecific competition for nutrients and light in diatom cultures. Journal of Freshwater Ecology 24(1): 145-157. https://doi.org/10.1080/02705060.2009.9664275
  32. McCormick, P.V. and R.J. Stevenson. 1998. Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology 34(5): 726-733. https://doi.org/10.1046/j.1529-8817.1998.340726.x
  33. MOE. 2017. Operation plan of water environment monitoring network, Ministry of Environment.
  34. MOE. 2020. Aquatic ecosystem health survey statistical information report, Ministry of Environment.
  35. Nam, K.-H. 2014. study on the compound-disaster risk assessment by utilizing the bayesian network, Graduate School, Inje University.
  36. NIER. 1992. Standard methods for the examiantion of environmental pollution, Ministry of Environment.
  37. NIER. 2019. Guidelines for aquatic ecosystem survey and health assessment methods (estuary), National Institute of Environmental Research.
  38. Noh, B.-H. 2011. Development of estuarine wetland restoration and management program in Korea, Korea Environment Institute.
  39. Noh, S., M. Byeon, M. Kim and J. Lee. 2009. Development of Biological Criteria for Water Quality Assessment using Benthic Diatoms. Journal of Korean Society on Water Quality 25(6): 879-885.
  40. Park, K.-W., Y.-S. Kim, J.-W. Park, K.-H. Jeune and M.-K. Kim. 2011. Seasonal Variations of Water Environments and Benthic Diatom Communities in Streams across Byeonsan-Bando and Seonunsan Parklands in Jeollabukdo, Korea. Korean Journal of Limnology 44(2): 239-251.
  41. Park, S.-J., D.-K. Lee, D.-K. Lee and D.-K. Lee. 2014. Risk Assessment of Potential Inundation Due to Sea Level Rise Using Bayesian Network. Journal of Korea Planning Association 49(2): 347-358. https://doi.org/10.17208/jkpa.2014.04.49.2.347
  42. Rho, P. and C.-H. Lee. 2014. Spatial Distribution and Temporal Variation of Estuarine Wetlands by Estuary Type. Journal of the Korean Geographical Society 49(3): 321-338.
  43. Rimet, F. 2012. Diatoms: an ecoregional indicator of nutrients, organic matter and micropolluants pollution, Universit? de Grenoble.
  44. Roubeix, V. and M. Coste. 2017. A case of close interspecific interactions between diatoms: selective attachment on a benthic motile species. Aquatic Microbial Ecology 80(1): 55-59. https://doi.org/10.3354/ame01840
  45. Shen, R., H. Ren, P. Yu, Q. You, W. Pang and Q. Wang. 2018. Benthic diatoms of the Ying River (Huaihe River Basin, China) and their application in water trophic status assessment. Water 10(8): 1013. https://doi.org/10.3390/w10081013
  46. Shim, Y. 2016. Legal Policy Problems for the Restoration and Sustainable Management of Estuary - Focused on the Law and Policy Case Study concerning the Estuary Restoration and Management in the U.S. -. Journal of Law and Politics Research 16(3): 373-406. https://doi.org/10.17926/KAOLP.2016.16.3.373
  47. Shin, Y.-S. and B.-B. Yoon. 2011. Change in taxonomic composition of phytoplankton and environmental factors after construction of dike in Yeongsan River estuary. Korean Journal of Environmental Biology 29(3): 212-224.
  48. Stancheva, R., N. Kristan, W. Kristan and R.G. Sheath. 2020. Diatom genus Planothidium(Bacillariophyta) from streams and rivers in California, USA: diversity, distribution and autecology. Phytotaxa 470(1): 1-30~31-30. https://doi.org/10.11646/phytotaxa.470.1.1
  49. Suh, S.W., H.Y. Lee and S.C. Yoo. 2010. Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion. Journal of Korean Society of Coastal and Ocean Engineers 22(4): 258-271.
  50. Taylor, J.C., W.R. Harding and C. Archibald. 2007. An illustrated guide to some common diatom species from South Africa, Water Research Commission Pretoria.
  51. Urrea Clos, G. 2010. Distribution of diatom communities in agricultural and mining watersheds of Southwest Spain, Universitat de Girona.
  52. Wacker, A., V. Marzetz and E. Spijkerman. 2015. Interspecific competition in phytoplankton drives the availability of essential mineral and biochemical nutrients. Ecology 96(9): 2467-2477. https://doi.org/10.1890/14-1915.1
  53. Wang, P., H. Shen and P. Xie. 2012. Can hydrodynamics change phosphorus strategies of diatoms?-nutrient levels and diatom blooms in lotic and lentic ecosystems. Microbial ecology 63(2): 369-382. https://doi.org/10.1007/s00248-011-9917-5
  54. Watanabe, T., K. Asai, T. Ohtsuka, A. Tuji and A. Houki. 2005. Picture book and ecology of the freshwater diatoms. 784pp. Uchida Rokakuho, Tokyo.
  55. Westen, C.-J.v. and R.J. Scheele. 1996. Characteristics of estuaries, Springer.
  56. WFD. 2014. UKTAG River Assessment Method Macrophytes and Phytobenthos, Water Framework Directive.
  57. Won, D.H. 2012. A study on the selection of an estuary for pilot restoration to improve the health of the aquatic ecosystem, Ministry of Environment, Doohee Ecology Research center.
  58. Yang, J.-S., Y.-T. Kim and K.-W. Choi. 2004. The monitoring of biogeochemical interactions between sediment and water: a Mesocosm Study. Journal of the Korean Society of Oceanography 39(1): 107-118.
  59. Yoo, J., J.-H. Ryu, J.-H. Lee and T.-W. Kim. 2021. Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model. Journal of Korea Water Resources Association 54(10): 769-777. https://doi.org/10.3741/JKWRA.2021.54.10.769
  60. Yoo, K. 2007. Changes in topography after the construction of the estuary in Koreas estuary, Kyujanggak Institute for Korean studies, National University of Seoul.
  61. Zheng, L., C. Chen and F.Y. Zhang. 2004. Development of water quality model in the Satilla River Estuary, Georgia. Ecological Modelling 178(3-4): 457-482. https://doi.org/10.1016/j.ecolmodel.2004.01.016