DOI QR코드

DOI QR Code

Analysis of Properties of Water-Dispersed Bio-Polyurethane Based on Caster Oil for Lamb Leather Surface

Lamb Leather용 Caster Oil 기반 수분산 바이오 폴리우레탄필름의 제조

  • Lee, Joo-Youb (Department of fire and Disaster Prevention, Jungwon University)
  • 이주엽 (중원대학교 융합과학기술대학 소방방재학과)
  • Received : 2022.03.31
  • Accepted : 2022.04.18
  • Published : 2022.04.30

Abstract

Unmodified castor oil (CO) was used to obtain a castor-based aqueous polyurethane (CPUD) and isophorone diisocyanate (IPDI) was used to obtain a transparent film. The mixing effect of polypropyleneglycole (PPG) was analyzed to increase flexibility. In addition, ethylenediamine (EDA) was used as a chain extender. Tensile strength, elongation, and abrasion resistance were measured according to the change according to the castor oil content and the change in the chain extender, respectively. The tensile strength of the sample containing a lot of castor oil was 1.112 kgf/㎟, and the elongation was 88%. The tensile strength of the sample containing a lot of chain extender was 3.33kgf/㎟, and the elongation was 99%. The surface strength was visually confirmed through SEM. The surface strength was visually confirmed through SEM.

피마자 기반 수성 폴리우레탄(CPUD)을 얻기 위해 무 변성 피마자유 (CO) 와 투명 필름을 얻기 위해 이소포론 디이소시아네이트(IPDI)를 사용했다. 유연성을 증가시키기 위해 폴리프로필렌글리콜(PPG)의 혼합 효과를 분석하였다. 또한, 사슬연장제로 에틸렌다이아민(EDA)을 사용했다. 각각 피마자유 함유에 따른 변화와 사슬연장제 변화에 따른 인장강도, 연신율 내마모성을 측정했다. 피마자유 함유가 많은 시료의 인장강도가 1.112kgf/㎟, 연신율 88%로 나타났으며, 사슬연장제 함유가 많은 시료의 인장강도가 3.33kgf/㎟, 연신율 99%로 측정되었다. 표면강도는 SEM을 통해 육안으로 확인하였다.

Keywords

References

  1. Y. Luo, D. Xie, Y. Chena, T. Han, R. Chen, X. Sheng, Y. iMei, "Synergistic effect of ammonium polyphosphate and α -zirconium phosphate in flame-retardant poly(vinyl alcohol) aerogels", Polymer Degradation and Stability, Vol.170, Article. 109019, (2019).
  2. J. Hu, J. Shan, D. Wen, X. Liu, J. Zhao, Z. Tong, Flame retardant, mechanical properties and curing kinetics of DOPO-based epoxy resins, Polymer Degradation and Stability, Vol.109, pp. 218, (2014). https://doi.org/10.1016/j.polymdegradstab.2014.07.026
  3. W. R White, D. T. Durocher, "Recycling of Rigid Polyurethane Articles and Reformulation into a Variety of Polyurethane Applications" Journal of .cellular plastics, Vol.33, No.5, pp.477-86, (1997). https://doi.org/10.1177/0021955X9703300504
  4. D. Saihi, I. Vroman, S. Giraud, S. Bourbigot, "Microencapsulation of ammonium phosphate with a polyurethane shell. Part II", Interfacial polymerization technique", Reactive and Functional Polymers, Vo.l66, No.10, pp. 1118-1125, (2006). https://doi.org/10.1016/j.reactfunctpolym.2006.02.001
  5. Z.L. Abo-Shanab, A.A. Ragab, M. Mohammedy, S.A. EI-Kholy, "Simple preparation method of asphalt polyurethane foam for various insulating purposes", Egyptian Journal of Petroleum, Vol .29, No 4, pp.257-264, (2011).
  6. T. H. Mekonnen, T. Haile, M. Ly , "Hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings", Applied Surface Science, Vol.540, Part 1, 148299, (2021). https://doi.org/10.1016/j.apsusc.2020.148299
  7. Z. S. Petrovic, J. Milic, F. Zhang, J. Ilavsky."Fast-responding bio-based shape memory thermoplastic polyurethanes". Polymer, Vol.121, No 14, pp.26-37, (2017). https://doi.org/10.1016/j.polymer.2017.05.072
  8. Q. Zhou, L. Zhang, M. Zhang, B. Wang, S. Wang. "Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane". Polymer, Vol 44, No 5, pp.1733-1739, (2003). https://doi.org/10.1016/S0032-3861(02)00748-6
  9. Y. S. Kwak, S.W. Park, Y H. Lee, H. D. Kim. "Preparation and properties of waterborne polyurethanes for watervapor- permeable coating materials". Journal of Apply Polymer Science, Vol.89, pp.123-129, (2003). https://doi.org/10.1002/app.12128
  10. S. M. Cakic, I. S. Ristic, I. Krakovsky, D. T. Stojiljkovis, P. Belsky, L. Kollova. "Crystallizationand thermal properties in waterborne polyurethane elastomers: influence of mixed soft segment block". Mater Chem Phys, Vol.144, pp.31-40, (2014). https://doi.org/10.1016/j.matchemphys.2013.12.008
  11. U. Dorn, S. Enders, "Heat of mixing and liquideliquid-equilibrium of water polypropylene glycol (PPG) with different molecular weights and water + propylene glycol dimethyl ether", Fluid Phase Equilibria, Vol.424, pp.58-67, (2016). https://doi.org/10.1016/j.fluid.2015.10.003
  12. A. Santamaria-Echart, I. Fernandes L. Ugarte, F. Barreiro, M. Corcuera, A. Eceiza, "Green nanocomposites from Salvia-based waterborne polyurethane-urea dispersions reinforced with nanocellulose", Progress in Organic Coatings, Vol.50, Article.105989, (2021).
  13. X. Cui, T. Hiraoka, T. Honda, Y. Hsu, T. Asoh, H. Uyama, "Oligoether grafting on cellulose microfibers for dispersion in poly(propylene glycol) and fabrication of reinforced polyurethane composite", Composites Science and Technology, Online.30, Article.108595, (2020).
  14. H. Liang, S. Wang, C. Zhang, "Aqueous anionic polyurethane dispersions from castor oil", Industrial Crops and Products, Vol.122, pp.182-189, (2018). https://doi.org/10.1016/j.indcrop.2018.05.079
  15. M. Fuensanta, J. Jofre-RecheJose, M. Martin-Martinez, "Structure and adhesion properties before and after hydrolytic ageing of polyurethane urea adhesives made with mixtures of waterborne polyurethane dispersions", International Journal of Adhesion and Adhesives, Vol.85, pp.165-176, (2018). https://doi.org/10.1016/j.ijadhadh.2018.06.002
  16. L. Guo, S. Huang, J. Qu, "Synthesis and properties of high-functionality hydroxylterminated polyurethane dispersions", Progress in Organic Coatings, Vol.119, pp.214-220, (2018). https://doi.org/10.1016/j.porgcoat.2018.02.033