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Abstract. The aim of author’s in this paper is to study the Cayley graph
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sets and finite abelian groups that corresponds to balanced Cayley signed

graphs. The notion of Cayley signed graph has been demonstrated with
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1. Introduction

One principal step forward in the utility of graph-theoretic models in behav-
ioral sciences the possibility of representing the qualitative nature of interper-
sonal relationships in a social group. For instance, in the ‘acquaintance diagram’
of the social group, which is essentially a graph (or, more generally, a graphical
pattern), it cannot still be made out whether the two acquainted persons liked
or disliked each other: Therefore, mere graphs cannot well model the ‘structure
of interpersonal relationships’ in a social group. To represent the intrinsically
dichotomous nature of most of the socio-psychological interpersonal relations,
we have to assign weights +1 (or just the sign ‘+’) or −1 (or just the sign ‘−’)
to each pair uv of ‘acquaintances’ in the social group according to whether the
individuals u and v bear a qualitatively positive or negative ‘attitudes’ towards
each other. Such considerations from the works of social psychologists (e.g. Hei-
der [5]) led Harary [4] to the notion of a ‘signed graph’ and later on, Cartwright
and Harary [2] to the notion of a ‘signed digraph’, which is defined formally as
“A graph Γ equipped with a signature σ is called a signed graph, denoted by
Σ := (Γ, σ), where Γ = (V,E) is an underlying graph and σ : E → {+,−} is the
signature that labels each edge of Γ either by ‘+’ or ‘−’. The edges which receive
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the ‘+’(−) sign is called positive(negative) edge. A signed graph is an all-positive
(all-negative) if all of its edges are positive (negative), further, it is said to be
homogeneous if it is either an all-positive or an all-negative and heterogeneous
otherwise. The negative degree d−(v) of a vertex v is the number of negative
edges incident at v in Σ and the positive degree d+(v) is defined similarly.”

One of the fundamental concept in the theory of signed graph is that of
balance. Harary [4] introduced the fascinated concept of balanced signed graphs
for the analysis of social networks, in which a positive edge stands for a positive
relation and a negative edge is for a negative relation. A signed graph is balanced
if every cycle has even numbers of negative edges. A cycle in a signed graph
Σ is said to be positive if it contains an even number of negative edges. The
following criteria for balance is well-known.

Lemma 1.1 (Zaslavsky [12]). A signed graph in which every chordless cycle is
positive is balanced.

Due to numerous number of applications in various fields signed graphs are
leading to vast variety of results and questions and number of papers with their
applications have been published in the reputed international journals, for de-
tailed bibliography of signed graphs the reader is referred to up-to-date creative
survey article of Zaslavsky [11].

Throughout this article, all graphs are assumed to be simple, i.e., undirected
graphs in which any two vertices are joined by at most one edge and without
loops. For terminology and notation from group theory and graph theory not
defined in this paper, we referred the reader to [6] and [3] respectively.

1.1. Preliminary Analysis. In this subsection, we briefly recall the notion
of Cayley set and generating set and derived some observations needed in the
sequel of this paper.

Let Γ be an abelian group. The group of integers modulo n, denoted by Zn

in which the sets Z(Zn) and U(Zn) are defined as; Z(Zn) = {x : gcd(x, n) ̸= 1}
and U(Zn) = {y : gcd(y, n) = 1}. Also, U(Zm×Zn) is defined as, U(Zm×Zn) =
{(x, y) : gcd(x,m) = 1 & gcd(y, n) = 1}.

Definition 1.2. A nonempty subset S of Γ is called Cayley set or symmetric
Cayley set if e /∈ S and for every a ∈ S, a−1 ∈ S. If Cayley set generates group
Γ, then S is called generating set or symmetric generating set.

Consequently, for a given group Γ of order n

1 ≤ |S| ≤ n− 1. (1)

However, if S generates Γ, then

2 ≤ |S| ≤ n− 1. (2)

The following example illustrate the above concepts:

Example 1.3. Let Γ ∼= Z4. Then possible Cayley sets are S1 = {2}, S2 = {1, 3},
S3 = {1, 2, 3} and out of them S2 and S3 are both generating sets.
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If |S| is either 1 or (n− 1), then such S is called an extreme Cayley set and if
|S| is either 2 or (n−1), then such S is called an extreme generating set. Notice
that if |Γ| is odd, then |S| can be even. However, if |Γ| is even, then |S| may be
even or odd. Now we shall put our attention to algebraic graph. The notion of
Cayley graph was introduced by A. Cayley [1] in 1978 as follows: The Cayley
graph of Γ, denote by Cay(Γ, S) is a simple graph with the vertex set Γ, and two
vertices x and y are adjacent if and only if there exists s ∈ S such that x = sy.
For more details on the Cayley graphs we refer the reader to [8, 10].

The objective of this paper is to study the interplay between properties of
Cayley graph together with parameters of signed graph. The main motivation
behind this work is wide number of applications of signed graphs in allied ar-
eas and the importance of Cayley graph. Towards full-filling the objective here
we study Cayley graph in the realm of signed graph. These graphs belongs to
the family of algebraic signed graph for more details see [7]. In the course of
investigation we found that if S is an extreme Cayley set of Γ, then Cayley
signed graph is always balanced. Further, we determine the Cayley set whose
associated signed graph is balanced. The advantage of examining these classes
of graphs helps us to determine and extend certain graphical properties of asso-
ciated algebraic structure and vice-versa.

2. Cayley Signed Graphs

At this stage one might be tempted to ask what is the appropriate way to
extend the notion of signed graph in the realm of Cayley graph? Towards an-
swering this, we have introduced the notion of Cayley signed graph. The formal
definition of new notion is as follows:

Definition 2.1. Let S be a Cayley set of a finite group Γ. The Cayley signed
graph, denoted by CayΣ(Γ, S) := (Cay(Γ, S), σ) is a signed graph whose under-
lying graph is Cay(Γ, S) with vertex set Γ and Cayley set S, and for an edge
(x, y) ∈ E(Cay(Γ, S)), the signature σ is defined as

σ(x, y) =

{
+, if x ∈ S or y ∈ S;
−, otherwise.

To illustrate the concept, we have the following example:

Example 2.2. Let Γ ∼= Z5. Then there are three Cayley sets of Γ which are
generating set also, namely, S1 = {1, 4}, S2 = {2, 3}, and S3 = {1, 2, 3, 4}. The
Cayely signed graph CayΣ(Z5, S1), CayΣ(Z5, S2) and CayΣ(Z5, S3) with respect
to generating sets S1, S2 and S3, respectively have shown in Figure 1.

Observation 2.1. From Figure 1, we observe that the Cayely signed graph
with respect to generating sets S1 and S2 are both not balanced, as in both
CayΣ(Z5, S1) and CayΣ(Z5, S2) there is only one(odd) negative edge in the
cycle. However CayΣ(Z5, S3) is an all-positive signed graph and it is balanced
trivially.
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Figure 1. The Cayley signed graphs

Note that there do exist Cayley sets/generating sets with respect to which
Cayley signed graph is not balanced. So it is noteworthy that before providing
the main results, we need some preparatory observations for the advancement
of the concept.

Observation 2.2. Consider Γ ∼= Z8 and let S1, S2 ⊆ Γ, where S1 = {2, 6}
and S2 = {2, 4, 6} be Cayley sets of Γ. Then CayΣ(Γ, S1) is balanced how-
ever CayΣ(Γ, S2) is not balanced. Further, if we choose S1 = {3, 5} and S2 =
{1, 3, 5, 7}, then both CayΣ(Γ, S1) and CayΣ(Γ, S2) are balanced.

Example 2.2 along with Observations 2.1, and Observation 2.2 prompts us to
raise the following interesting problem:

Problem 2.1. Characterize the Cayley sets/Generating sets S with respect to
which Cayley signed graph is balanced.

Towards attempting the Problem 2.1, several results have been established.
First, we begin with a lemma which is advantageous to derive new results.

Lemma 2.3. If a signed graph Σ is an all-positive, then it is balanced.

Proof. If a signed graph Σ is an all-positive, then there is no negative edge.
Therefore, each cycle in Σ consists of zero (even number) negative edges, and
hence Σ is balanced trivially. □

3. Balanced Cayley Signed Graphs

We shall move forward with some basic results about Cayley signed graphs.
It appears more interesting that the balanced structure of Cayley signed graph
depends upon the generating set ‘S’ as well as on group ‘Γ’. Now with this
consideration, we have two questions, What are those ‘S’ in CayΣ(Γ, S) such
that CayΣ(Γ, S) is balanced? What are those group ‘Γ’ for which CayΣ(Γ, S) is
balanced? It is easy to notice that for any finite abelian group Γ and generating
set S with |S| = |Γ| − 1, we will have an all-positive signed graph. Therefore, it
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is important to be noted here that the study of this particular case (i.e., |S| = 1
or |S| = n − 1 ) is scanty as clear from the existing literature and hence needs
to be studied carefully.

From the foregoing analysis, we have the following result:

Theorem 3.1. Let Γ be a finite abelian group and S be an extreme Cayley set.
Then CayΣ(Γ, S) is balanced.

Proof. Let Γ be a finite abelian group and S be an extreme Cayley set. Since
S is an extreme Cayley set, so either |S| = 1 or |S| = n − 1. If |S| = 1, then
Cay(Γ, S) is isomorphic to n

2 -copies of K2. Clearly, due to absence of cycle,
CayΣ(Γ, S) is trivially balanced. On the other hand if |S| = n− 1, then all non-
zero elements of Γ belongs to S. Therefore, in view of Definition 2.1, CayΣ(Γ, S)
is an all-positive, and hence balanced. □

Now, we deeply pursuit of our basic objectives to characterize S. To do this,
we shall impose some conditions on S and Γ.

Theorem 3.2. Let Γ be a finite abelian group of order n, (n > 3) and S =
{a, a−1} be a Cayley set. Then CayΣ(Γ, S) is balanced if and only if order of
element a is even.

Proof. Let Γ be a finite abelian group of order n, (n > 3) and S = {a, a−1} be
a Cayley set. Since |S| = 2, so Cay(Γ, S) is a 2-regular graph. It means either
Cay(Γ, S) is isomorphic to a cycle or isomorphic to copies of cycles. Towards
proving the necessity part, let us assume that CayΣ(Γ, S) is balanced and our
aim is to show that order of element a is even and this will be proved by con-
trapositive. Let us suppose that order of element a is odd. Now we shall tackle
two cases depending upon the structure of Cay(Γ, S).

Case-1: Let O(a) = k = n. Since the order of each element of a group divides

the order of group, this gives O(Γ)
O(a) = 1. In this case Cay(Γ, S) is isomorphic to a

cycle Ck. Also note that an edge in CayΣ(Γ, S) is negative if and only if none of
its end vertices belongs to S. Therefore, its respective signed graph CayΣ(Γ, S)
is isomorphic to a cycle Ck with exactly four positive edges. Since k is odd, thus
the negative edges in each cycle of CayΣ(Γ, S) are also odd. Hence CayΣ(Γ, S)
is not balanced.

Case-2: Let O(a) = k < n. Since the order of each element of a group

divides the order of group, this gives us O(Γ)
O(a) = n

k . In this case Cay(Γ, S) is

isomorphic to Ck ∪ Ck ∪ · · · ∪ Ck︸ ︷︷ ︸
(n/k)−times

and its respective signed graph CayΣ(Γ, S)

is isomorphic to Ck ∪ Ck ∪ · · · ∪ Ck︸ ︷︷ ︸
(n/k)−times

in which one component has exactly four

positive edges out of k edges and remaining other components(cycles) are an
all-negative. Since k is odd, therefore, each cycle consists of an odd number
of negative edges in CayΣ(Γ, S) this indicates that CayΣ(Γ, S) is not balanced.
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Thus we have contradiction in each of the possible cases, and hence the necessity
follows by contraposition.

Conversely, let order of element a is k, which is even and our objective is to
show that CayΣ(Γ, S) is balanced. Towards proving this we shall deal with two
cases listed below:

Case-1: Let O(a) = k = n. Now to tackle this case similar arguments as
reported above in Case-1 of necessity can be given to show that CayΣ(Γ, S) is
isomorphic to a cycle Ck with exactly four positive edges. Since k is even, so the
negative edges in each cycle of CayΣ(Γ, S) are also even in number. Therefore,
CayΣ(Γ, S) is balanced.

Case-2: Let O(a) = k < n. Now to tackle this case similar arguments as
reported above in Case-2 of necessity, we found that CayΣ(Γ, S) is isomorphic
to Ck ∪ Ck ∪ · · · ∪ Ck︸ ︷︷ ︸

(n/k)−times

in which one component has exactly four positive edges

out of k edges and remaining other components(cycles) are an all-negative. Since
k is even, therefore, each cycle consists of an even number of negative edges in
CayΣ(Γ, S) and which ensures that CayΣ(Γ, S) is balanced. □

Theorem 3.3. Let Γ be an abelian group of order n and let S be generating set
with |S| = n− 2. Then CayΣ(Γ, S) is balanced.

Proof. Let S be generating set of Γ with |S| = n − 2. In view of definition
of generating set it can be found that Γ must possesses non-trivial self inverse
element. Also note that |S| = n− 2 ensure that only self inverse element except
identity does not belong to S and this guarantee that in CayΣ(Γ, S), there is no
negative edge. Thus CayΣ(Γ, S) is an all-positive, and hence balanced. □

From the above results, it can easily be observed that only the condition of
cardinality can not suffices our main goal as there are several other generating
sets deserving serious attention to develop the concept. At this place, it becomes
important to explore specific classes of generating set that provide the balanced
structure of Cayley signed graph.

Theorem 3.4. Let Γ be a finite cyclic group and p be a prime number. Then
CayΣ(Γ, S) is balanced if one of the following holds:

(a) S ⊆ U(Γ), when |Γ| is even,
(b) S = S′ ∪ {p}, when |Γ| = 2p, where S′ ⊆ U(Γ),

(c) S = { |Γ|
4 , 3|Γ|

4 }, when |Γ| is multiple of 4,

(d) S = U(Γ), when |Γ| = pk, k ≥ 1,
(e) S = {a : a ̸= a−1, ∀ a ∈ Γ}, when |Γ| is even.

Proof. (a) Let Γ be a finite cyclic group of even order (say n) and S ⊆ U(Γ).
To prove this case we shall consider the following possibilities:
If n = 2, then Cay(Γ, S) is 1-regular. Therefore, due to absence of a cycle
CayΣ(Γ, S) is trivially balanced.
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On the other hand, if n > 2, then there are two possibilities, either S contains
all odd positive integers upto n or S contains some odd positive integers upto
n. If S contains all odd positive integers, then there is no negative edge in
CayΣ(Γ, S). If S contains some odd positive integers then (Γ \ S) contains even
as well as odd positive integers. The one end of negative edges incident only at
odd positive integers belong to (Γ \ S) and at multiples of these odd positive
integers (Γ\S). These odd vertices incident with even number of negative edges
and also, every cycle in CayΣ(Γ, S) is of even length because S ⊆ U(Γ) and |Γ|
is even. Thus every cycle contains odd and even positive integers alternatively
with even number of negative edges. Therefore, CayΣ(Γ, S) is balanced.

(b) Consider |Γ| = 2p and S = U(Γ) ∪ {p}, where p is prime number. Since
the elements in (Γ \ S) are multiple of 2, then for arbitrary x, y ∈ (Γ \ S), the
difference x− y is multiple of 2 and this indicates the absence of negative edge
in CayΣ(Γ, S). Therefore, CayΣ(Γ, S) is an-all positive signed graph, and hence
balanced.

Next, if S = S′ ∪ {p}, where S′ ⊂ U(Γ), then U(Γ) have only odd positive
integers. Although, (Γ \ S) consists of even as well as odd positive integers,
which are member of U(Γ). In this case Cay(Γ, S) is isomorphic to |S|-regular
bipartite graph. In order to see the respective signed graph let x, y ∈ (Γ \ S),
then x and y are adjacent with negative edge if and only if x is odd and y is
even (or vice-versa). Choose any arbitrary cycle in CayΣ(Γ, S), then its adjacent
vertices are labeled by odd positive integer, even positive integer, odd positive
integer, alternatively. Now using the arguments analogues to those used in the
previous case it can be shown that there does not exist a cycle consisting of odd
number of negative edges, which would ensure that CayΣ(Γ, S) is balanced.

(c) If S = {n
4 ,

3n
4 }, where n is multiple of 4 (say n = 4k), then Cay(Γ, S)

is isomorphic to C4 ∪ C4 ∪ · · · ∪ C4︸ ︷︷ ︸
k−times

and its respective signed graph CayΣ(Γ, S)

is isomorphic to C4 ∪ C4 ∪ · · · ∪ C4︸ ︷︷ ︸
k−times

in which exactly one component formed by

the vertices, namely 0, n
4 ,

3n
4 and n

2 is an all-positive, and remaining (k − 1)
components are an all-negative. Therefore, each cycle consists of an even number
of negative edges. Hence CayΣ(Γ, S) is balanced.

(d) Let |Γ| = pk, where p is prime and k is a positive integer and S = U(Γ).
Note that an edge in CayΣ(Γ, S) is negative if and only if none of end vertices
belongs to S. Consider two arbitrary elements x and y from Γ \ S, then clearly
the difference x−y is a multiple of p, which does not belongs to S. This indicates
that there does not exist negative edges in CayΣ(Γ, S). Therefore, CayΣ(Γ, S)
is an all-positive signed graph and hence it is balanced.

(e) Let |Γ| be even and S = {a : a ̸= a−1, ∀ a ∈ Γ}. Since Γ is a cyclic group
of even order, so Γ necessarily has one non-zero self inverse element. This implies
that |S| = |Γ| − 2 and in view of Theorem 3.3, CayΣ(Γ, S) is balanced. □
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Theorem 3.5. Let Γ be a finite abelian group with |Γ| < 9 and S = U(Γ). Then
CayΣ(Γ, S) is balanced.

Proof. Let Γ be a finite abelian group with |Γ| < 9 and S = U(Γ). If the
order of Γ belongs to {2, 3, 5, 7}, then Γ is cyclic and hence by Theorem 3.4 (d),
CayΣ(Γ, S) is balanced. Now we shall consider remaining exhaustive cases for
the cardinality of Γ, i.e, |Γ| = 4 or |Γ| = 6 or |Γ| = 8. Let |Γ| = 4. Then upto
isomorphism the possible abelian groups are Z4, and Z2 × Z2. Then for Z4,
CayΣ(Γ, S) is balanced due to Theorem 3.4 (d) and for Z2×Z2 we have |S| = 1,
so in view of Theorem 3.1, CayΣ(Γ, S) is balanced. Next, let |Γ| = 6. Then,
CayΣ(Γ, S) is isomorphic to a cycle graph C6 having exactly two negative edges
forming a section. Therefore by definition CayΣ(Γ, S) is balanced. Finally, let
|Γ| = 8. Then upto isomorphism, precisely the abelian groups are Z8, Z2 × Z4,
and Z2 × Z2 × Z2. For Γ ∼= Z8, CayΣ(Γ, S) is balanced due to Theorem 3.4
(d). For group Z2 × Z4, CayΣ(Γ, S) is isomorphic to C4 ∪ C4, in which one
component is an all-positive and other is an all-negative, therefore, each cycle
consists of even number of negative edges in CayΣ(Γ, S), and hence balanced.
For the group Γ ∼= Z2×Z2×Z2, Cay(Γ, S) ∼= K2∪K2∪K2∪K2, which indicates
that CayΣ(Γ, S) is trivially balanced due to absence of a cycle. Thus in each
of the above mentioned cases, it follows that for each Γ (|Γ| < 9) CayΣ(Γ, S) is
balanced. □

In view of the Theorem 3.5 an obvious but important point that needs to be
noted here, is the following remark.

Remark 3.1. From the foregoing analysis for generating set S = U(Γ) , one can
easily verify that the smallest order of an abelian group Γ for which CayΣ(Γ, S)
is not balanced is 9, and precisely the group is Z3 × Z3.

In fact, It would thus be interesting to see the impact of Cayley set S = Z0(Γ)
on the balanced structure of CayΣ(Γ, S), which is stated in the following remark:

Remark 3.2. The smallest order of an abelian group Γ with Cayley set S =
Z0(Γ) for which CayΣ(Γ, S) is not balanced is 6 and precisely the group is Z6.

3.1. Balanced Cayley Signed Graphs with Specific Generating Sets. In
this section, we shall choose some specific generating sets to establish necessary
and sufficient conditions for balanced Cayley signed graph.

Theorem 3.6. Let Γ ∼= Z
p
k1
1

×Z
p
k2
2

× · · · ×Z
p
kt
t

(ki ≥ 1), where pt’s are prime

and S = U(Γ) be generating set. Then CayΣ(Γ, S) is balanced if and only if
either

(i) t = 1 or
(ii) at least one of Z

p
ki
i

(1 ≤ i ≤ t) has Z2 as a quotient.

Proof. Necessity: Let Γ ∼= Z
p
k1
1

× Z
p
k2
2

× · · · × Z
p
kt
t

(ki ≥ 1) and S = U(Γ)

be generating set. Suppose CayΣ(Γ, S) is balanced and our aim is to show
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that any one of the conditions hold. We shall prove this by contrapositive, to
do this, let us suppose CayΣ(Γ, S) is balanced and each of listed condition (i)
and (ii) is false. Assume that t > 1 and none of Z

p
ki
i

has Z2 as a quotient

and this indicates that pi > 2 ∀ i. Let x, y, z ∈ Γ, where x = (0, 0, . . . , 0, 2),
y = (2, 2, . . . , 2, 0) and z = (1, 1, . . . , 1). Then x, y and z are mutually adjacent
in Cay(Γ, S) whence in their respective signed graph CayΣ(Γ, S), x is adjacent
to y with negative edge and remaining pair of vertices are adjacent with positive
edge as z ∈ U(Γ). Thus one can see the presence of a triangle with exactly one
negative edge in CayΣ(Γ, S). This implies that CayΣ(Γ, S) is not balanced, a
contradiction. Hence by contrapositive necessity holds.
Sufficiency: Let us suppose one of conditions is true and our aim is to show that
CayΣ(Γ, S) is balanced. First, if condition (i) is true, then by Theorem 3.4,
CayΣ(Γ, S) is balanced. Next, let at least one of Z

p
ki
i

has Z2 as a quotient for

some i in Γ. Without loss of generality assume that Z
p
kj
j

has Z2 as a quotient.

If we choose two elements from S, then clearly they can not be adjacent in
Cay(Γ, S) because U(Γ) contains the elements of the form (u1, u2, . . . , ut), where
uj is odd. In this case Cay(Γ, S) is |U(Γ)|-regular bipartite graph in which one
partite set consists of U(Γ) along with all those elements of Z0(Γ) in which
jth-coordinate belongs to U(Z

p
kj
j

) and the remaining elements of Γ will be in

other partite set. In order to see the respective signed graph, let x, y ∈ Γ \ S,
where x = (x1, x2, . . . , xt) and y = (y1, y2, . . . , yt). Then x is adjacent to y with
negative edge if and only if x− y ∈ S. Since Cay(Γ, S) is a bipartite graph, so x
and y must belongs to different partite sets with xi ∈ U(Z

p
ki
i

) and yi ∈ Z(Z
p
ki
i

)

(or vice-versa). Since this holds for all i (1 ≤ i ≤ t) and each cycle in CayΣ(Γ, S)
is of even length. Therefore, each cycle in CayΣ(Γ, S) consists of even number
of negative edges in CayΣ(Γ, S) and hence balanced. □

Theorem 3.6 suggests the validity of the following remark:

Remark 3.3. The above derived result is for arbitrary finite abelian group Γ
and generating set S = U(Γ), thus the result established in [9, Theorem 4]
becomes a corollary to Theorem 3.6.

Theorem 3.7. Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group,

p′is are prime, k′is, i and t are positive integers. Assume that S = Z0(Γ) be a
Cayley set of Γ. If at least one Zpi

ki is isomorphic to Z2 and |U(Γ)| ≥ 3, then
CayΣ(Γ, S) is not balanced.

Proof. Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group and S =

Z0(Γ) be a Cayley set of Γ. In order to prove the desire result it suffices to
show the existence of a negative cycle in CayΣ(Γ, S). If atleast one of Zpi

ki

is isomorphic to Z2, then we can choose u = (1, x2, . . . , xt), v = (1, y2, . . . , yt)
and w = (1, z2, . . . , zt) three distinct elements from U(Γ) as |U(Γ)| ≥ 3, where
xi, yi, zi ∈ U(Zpt

kt ) (2 ≤ i ≤ t). Note that in CayΣ(Γ, S) an edge is negative
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if and only if none of its end vertices belongs to S. Since the vertices u, v and
w are mutually adjacent to each other in CayΣ(Γ, S) through negative edge, so
there exist an all-negative triangle, which would ensures that CayΣ(Γ, S) is not
balanced. □

Theorem 3.8. Let be a finite abelian group. Assume that S = Z0(Γ) be a
Cayley set of Γ. Then Cayley signed graph CayΣ(Γ, S) is balanced if and only if
either Γ is isomorphic to Z4 or Z2

t.

Proof. Necessity: Let Γ ∼= Zp1
k1 × Zp2

k2 × · · · × Zpt
kt be a finite abelian group,

where p′is are prime, k′is, i and t are positive integers and S = Z0(Γ) be a Cayley
set of Γ. Suppose if possible that CayΣ(Γ, S) is balanced and Γ is neither
isomorphic to Z4 nor Z2

t (t > 1). As U(Γ) can have at least two elements,
so consider two distinct elements u1, and u2 from the set Γ \ S and z ∈ S,
where u1 = (1, 1, . . . , 1), u2 = (1, 1, . . . , a) and z = (1, 0, . . . , 0). The vertices
u1, u2 and z are mutually adjacent in Cay(Γ, S) and in their respective signed
graph CayΣ(Γ, S), u1 is adjacent to u2 with negative edge and other two pair of
vertices are adjacent with positive edge. Therefore, there exist a triangle, viz.,
u1 − u2 − z − u1 in CayΣ(Γ, S) with exactly one negative edge. This ensure the
existence of a cycle with an odd numbers of negative edge. Thus CayΣ(Γ, S) is
not balanced, a contradiction, hence by contrapositive necessity hold.
Sufficiency: Let Γ ∼= Zp1

k1 ×Zp2
k2 ×· · ·×Zpt

kt be a finite abelian group, p′is are

prime numbers, k′is, i and t are positive integers. Let S = Z0(Γ) be a Cayley set
of Γ. Here our aim is to show that CayΣ(Γ, S) is balanced in each of the above
listed group. We will prove each case separately as follows:
(i) If Γ ∼= Z4, then |S| = 1. Therefore, in view of Theorem 3.1, CayΣ(Γ, S) is
balanced.
(ii) Next, if Γ ∼= Z2

t, then S contains all non-zero elements except the one
element, namely, (1, 1, 1, . . . , 1)︸ ︷︷ ︸

t−times

. Since there is only one element which does not

belong to S, so there is no negative edge in CayΣ(Γ, S), and hence it is an
all-positive signed graph and therefore, CayΣ(Γ, S) is trivially balanced. □
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